Microstructure, Texture and Mechanical Properties of Al-Mg-Si Alloy Processed by Multiaxial Compression


The present work aims to study the effect of multiaxial compression (MAC) on the evolution of microstructure, texture, and mechanical properties of Al-Mg-Si alloy. MAC was successfully performed at room temperature up to three cycles to produce ultrafine-grained microstructure. Processed samples were characterized using electron backscatter diffraction and x-ray diffraction techniques to study the evolution of microstructure and texture. There was a drastic decrease in the grain size from an initial average grain size of ~ 124 to ~ 3 μm after completion of MAC processing. The fraction of high-angle grain boundaries decreased after the first cycle and then increased in subsequent cycles. Pole figure measurement suggested the evolution of brass, copper, and S texture components after completion of three cycles. The effect of evolved microstructure on mechanical properties was evaluated using hardness measurements and uniaxial tensile tests. The average hardness and yield strength value increased from 52 VHN and 90 MPa for the initial condition to 95 VHN and 249 MPa after three cycles of MAC, respectively. Strain-hardening exponent was found to increase continuously with MAC cycles.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    C. Xu, Z. Horita, and T.G. Langdon, The Evolution of Homogeneity in an Aluminum Alloy Processed Using High-Pressure Torsion, Acta Mater., 2008, 56(18), p 5168–5176

    CAS  Google Scholar 

  2. 2.

    H.S. Kim, Y. Estrin, and M.B. Bush, Plastic Deformation Behaviour of Fine-Grained Materials, Acta Mater., 2000, 48(2), p 493–504

    CAS  Google Scholar 

  3. 3.

    A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida, Severe Plastic Deformation (SPD) Processes for Metals, CIRP Ann. Manuf. Technol., 2008, 57(2), p 716–735

    Google Scholar 

  4. 4.

    R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu, Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation, JOM, 2006, 58(4), p 33–39

    Google Scholar 

  5. 5.

    A.P. Zhilyaev and T.G. Langdon, Using High-Pressure Torsion for Metal Processing: Fundamentals and Applications, Prog. Mater Sci., 2008, 53(6), p 893–979

    CAS  Google Scholar 

  6. 6.

    X. Yang, J. Yi, S. Ni, Y. Du, and M. Song, Microstructural Evolution and Structure-Hardness Relationship in an Al-4wt.%Mg Alloy Processed by High-Pressure Torsion, J. Mater. Eng. Perform., 2016, 25(5), p 1909–1915

    CAS  Google Scholar 

  7. 7.

    R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater Sci., 2006, 51(7), p 881–981

    CAS  Google Scholar 

  8. 8.

    C. Xu, T.G. Langdon, Z. Horita, and M. Furukawa, Using Equal-Channel Angular Pressing for the Production of Superplastic Aluminum and Magnesium Alloys, J. Mater. Eng. Perform., 2004, 13(6), p 683–690

    CAS  Google Scholar 

  9. 9.

    Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel Ultra-High Straining Process for Bulk Materials-Development of the Accumulative Roll-Bonding (ARB) Process, Acta Mater., 1999, 47(2), p 579–583

    CAS  Google Scholar 

  10. 10.

    H. Yu, H. Wang, C. Lu, A. Tieu, H. Li, A. Godbole, and X. Zhao, Microstructure Evolution of Accumulative Roll Bonding Processed Pure Aluminum During Cryorolling, J. Mater. Res., 2016, 31(6), p 797–805

    CAS  Google Scholar 

  11. 11.

    A.K. Ghosh, U.S. Patent No. 4721537 (1988)

  12. 12.

    S. Biswas and S. Suwas, Evolution of Sub-Micron Grain Size and Weak Texture in Magnesium Alloy Mg–3Al–0.4Mn by a Modified Multi-axial Forging Process, Scr. Mater., 2012, 66(2), p 89–92

    CAS  Google Scholar 

  13. 13.

    R.K. Sabat, R.K. Mishra, A.K. Sachdev, and S. Suwas, The Deciding Role of Texture on Ductility in a Ce Containing Mg Alloy, Mater. Lett., 2015, 153, p 158–161

    CAS  Google Scholar 

  14. 14.

    B. Cherukuri and R. Srinivasan, Properties of AA6061 Processed by Multi-axial Compressions/Forging (MAC/F), Mater. Manuf. Process., 2006, 21(5), p 519–525

    Google Scholar 

  15. 15.

    N.P. Gurao, P. Kumar, A. Sarkar, H.G. Brokmeier, and S. Suwas, Simulation of Deformation Texture Evolution During Multi Axial Forging of Interstitial Free Steel, J. Mater. Eng. Perform., 2013, 22(4), p 1004–1009

    CAS  Google Scholar 

  16. 16.

    N. Verma, S. Singh, P. Nageswararao Rao, R. Jayaganathan, A. Midathada, K. Verma, and U.K. Ravella, Elevated Corrosion in Strain Hardened Al Mg Alloy, Vacuum, 2018, 157, p 402–413

    Google Scholar 

  17. 17.

    X. Wu, X. Yang, J. Ma, Q. Huo, J. Wang, and H. Sun, Enhanced Stretch Formability and Mechanical Properties of a Magnesium Alloy Processed by Cold Forging and Subsequent Annealing, Mater. Des., 2013, 43, p 206–212

    CAS  Google Scholar 

  18. 18.

    S. Zherebtsov, E.A. Kudryavtsev, S. Kostjuchenko, S. Malysheva, and G. Salishchev, Strength and Ductility-Related Properties of Ultrafine Grained Two-Phase Titanium Alloy Produced by Warm Multiaxial Forging, Mater. Sci. Eng. A, 2012, 536, p 190–196

    CAS  Google Scholar 

  19. 19.

    W. Yan, X. Liu, J. Huang, and L. Chen, Strength and Ductility in Ultrafine-Grained Wrought Aluminum Alloys, Mater. Des., 2013, 49, p 520–524

    CAS  Google Scholar 

  20. 20.

    A. Takayama, X. Yang, H. Miura, and T. Sakai, Continuous Static Recrystallization in Ultrafine-Grained Copper Processed by Multi-directional Forging, Mater. Sci. Eng. A, 2008, 478(1), p 221–228

    Google Scholar 

  21. 21.

    X. Yang, D. Wang, Z. Wu, J. Yi, S. Ni, Y. Du, and M. Song, A Coupled EBSD/TEM Study of the Microstructural Evolution of Multi-axial Compressed Pure Al and Al–Mg Alloy, Mater. Sci. Eng. A, 2016, 658, p 16–27

    CAS  Google Scholar 

  22. 22.

    M. Wheeler, P. Sheasby, and D. Kewley, Aluminum Structured Vehicle Technology—A Comprehensive Approach to Vehicle Design and Manufacturing in Aluminum, SAE Trans., 1987, 96, p 566–576

    Google Scholar 

  23. 23.

    G. Nurislamova, X. Sauvage, M. Murashkin, R. Islamgaliev, and R. Valiev, Nanostructure and Related Mechanical Properties of an Al-Mg-Si Alloy Processed by Severe Plastic Deformation, Philos. Mag. Lett., 2008, 88(6), p 459–466

    CAS  Google Scholar 

  24. 24.

    X.S. Xia, J. Huang, R.C. Zhang, Q. Zhao, Q.H. Hu, T.Q. Deng, Y.L. Xiao, and C.J. Sun, Evolution of Microstructure and Mechanical Properties of AZ61 Mg Alloy During Cyclic Closed Die Forging, Mater. Res. Innov., 2013, 17(1), p 130–134

    Google Scholar 

  25. 25.

    S.S. Satheesh Kumar and T. Raghu, Bulk Processing of Fine Grained OFHC Copper by Cyclic Channel Die Compression, Int. J. Mater. Res., 2015, 106(12), p 1230–1239

    Google Scholar 

  26. 26.

    L. Lutterotti, MAUD version 2.55. http://maud.radiographema.eu/. Accessed 15 Sept 2019

  27. 27.

    S. Suwas and R.K. Ray, Crystallographic Texture of Materials, Engineering Materials and Processes, Springer, London, 2014, p 256

    Google Scholar 

  28. 28.

    R. Kapoor, A. Sarkar, R. Yogi, S.K. Shekhawat, I. Samajdar, and J.K. Chakravartty, Softening of Al During Multi-axial Forging in a Channel Die, Mater. Sci. Eng. A, 2013, 560, p 404–412

    CAS  Google Scholar 

  29. 29.

    D.G. Morris and M.A. Muñoz-Morris, Microstructure of Severely Deformed Al–3Mg and Its Evolution During Annealing, Acta Mater., 2002, 50(16), p 4047–4060

    CAS  Google Scholar 

  30. 30.

    S. Ghodrat, T. Riemslag, and L.A.I. Kestens, Measuring Plasticity with Orientation Contrast Microscopy in Aluminium 6061-T4, Metals, 2017, 7(4), p 108–115

    Google Scholar 

  31. 31.

    D. Singh, P. Nageswararao, and R. Jayaganthan, Microstructural Studies of Al 5083 Alloy Deformed Through Cryorolling, Adv. Mater. Res., 2012, 585, p 376–380

    CAS  Google Scholar 

  32. 32.

    R. Kapoor, G.B. Reddy, and A. Sarkar, Discontinuous Dynamic Recrystallization in α-Zr, Mater. Sci. Eng. A, 2018, 718, p 104–110

    CAS  Google Scholar 

  33. 33.

    N.C. Popa, The (hkl) Dependence of Diffraction-Line Broadening Caused by Strain and Size for All Laue Groups in Rietveld Refinement, J. Appl. Cryst., 1998, 31(2), p 176–180

    CAS  Google Scholar 

  34. 34.

    V.M.S. Muthaiah and S. Mula, Effect of Zirconium on Thermal Stability of Nanocrystalline Aluminium Alloy Prepared by Mechanical Alloying, J. Alloys Compd., 2016, 688, p 571–580

    CAS  Google Scholar 

  35. 35.

    R. Hielscher and S. Helmut, A Novel Pole Figure Inversion Method: Specification of the MTEX Algorithm, J. Appl. Cryst., 2008, 41, p 1024–1037

    CAS  Google Scholar 

  36. 36.

    L. Zhang, Y. Wang, X. Yang, K. Li, S. Ni, D. Yong, and M. Song, Texture, Microstructure and Mechanical Properties of 6111 Aluminum Alloy Subject to Rolling Deformation, Mater. Res., 2017, 20(5), p 1360–1368

    CAS  Google Scholar 

  37. 37.

    J. Cho, A.D. Rollett, and K.H. Oh, Determination of Volume Fractions of Texture Components with Standard Distributions in Euler Space, Metall. Mater. Trans. A, 2004, 35, p 1075–1086

    Google Scholar 

  38. 38.

    K.O. Pedersen, O.G. Lademo, T. Berstad, T. Furu, and O.S. Hopperstad, Influence of Texture and Grain Structure on Strain Localisation and Formability for AlMgSi Alloys, J. Mater. Process. Technol., 2008, 200(1), p 77–93

    CAS  Google Scholar 

  39. 39.

    Q. Zhao and B. Holmedal, Influence of Dispersoids on Grain Subdivision and Texture Evolution in Aluminium Alloys During Cold Rolling, Trans. Nonferrous Metals Soc. China, 2014, 24(7), p 2072–2078

    CAS  Google Scholar 

  40. 40.

    M. Eizadjou, H.D. Manesh, and K. Janghorban, Microstructure and Mechanical Properties of Ultra-Fine Grains (UFGs) Aluminum Strips Produced by ARB Process, J. Alloys Compd., 2009, 474(1), p 406–415

    CAS  Google Scholar 

  41. 41.

    Z.P. Xing, S.B. Kang, and H.W. Kim, Structure and Properties of AA3003 Alloy Produced by Accumulative Roll Bonding Process, J. Mater. Sci., 2002, 37(4), p 717–722

    CAS  Google Scholar 

  42. 42.

    K. Nakashima, Z. Horita, M. Nemoto, and T.G. Langdon, Development of a Multi-pass Facility for Equal-Channel Angular Pressing to High Total Strains, Mater. Sci. Eng. A, 2000, 281(1), p 82–87

    Google Scholar 

  43. 43.

    S.H. Lee, Y. Saito, T. Sakai, and H. Utsunomiya, Microstructures and Mechanical Properties of 6061 Aluminum Alloy Processed by Accumulative Roll-Bonding, Mater. Sci. Eng. A, 2002, 325(1), p 228–235

    Google Scholar 

  44. 44.

    M. Hakamada, Y. Nakamoto, H. Matsumoto, H. Iwasaki, Y. Chen, H. Kusuda, and M. Mabuchi, Relationship Between Hardness and Grain Size in Electrodeposited Copper Films, Mater. Sci. Eng. A, 2007, 457, p 120–126

    Google Scholar 

  45. 45.

    X. Huang, N. Kamikawa, and N. Hansen, Strengthening Mechanisms in Nanostructured Aluminum, Mater. Sci. Eng. A, 2008, 483, p 102–104

    Google Scholar 

  46. 46.

    J.H. Hollomon, Tensile Deformation, Trans. Metall. Soc. AIME, 1945, 162, p 268–290

    Google Scholar 

  47. 47.

    S. Xue, Q. Li, Z. Fan, H. Wang, Y. Zhang, J. Ding, H. Wang, and X. Zhang, Strengthening Mechanisms and Deformability of Nanotwinned AlMg Alloys, J. Mater. Res., 2018, 33(22), p 3739–3749

    CAS  Google Scholar 

  48. 48.

    A. Bhaduri, Mechanical Properties and Working of Metals and Alloys, Vol 264, Springer Series in Materials Science Springer, Singapore, 2018, p 46

    Google Scholar 

  49. 49.

    M. Karali, Examination of the Strength and Ductility of AA-1050 Material Shaped with the Multi-stage Deep Drawing Method, Arch. Metall. Mater., 2011, 56(2), p 223–230

    CAS  Google Scholar 

  50. 50.

    J.R. Davis, Tensile Testing, 2nd ed., ASM International, Materials Park, 2004, p 130

    Google Scholar 

  51. 51.

    U.S. Dixit and R.G. Narayanan, Metal Forming-Technology and Process Modelling, New Delhi, McGraw Hill Education Private Limited, 2013, p 46

    Google Scholar 

Download references


The authors would like to thank the Ministry of Human Resource and Development (MHRD), Government of India and TEQIP-III grant for providing the financial support to conduct EBSD characterization. We also acknowledge Centre for Interdisciplinary Research (CIR), Motilal Nehru National Institute of Technology Allahabad and National facility of Texture and Orientation Imaging Microscopy (OIM), Indian Institute of Technology Bombay for providing the characterization facilities used in the current work.

Author information



Corresponding author

Correspondence to Abhishek Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roy, A., Tiwari, M., Sahu, S. et al. Microstructure, Texture and Mechanical Properties of Al-Mg-Si Alloy Processed by Multiaxial Compression. J. of Materi Eng and Perform 29, 3876–3888 (2020). https://doi.org/10.1007/s11665-020-04917-4

Download citation


  • Al-Mg-Si alloy
  • mechanical properties
  • microstructure
  • multiaxial compression (MAC)
  • texture