Microstructure Evolution and Microhardness Analysis of Metastable Beta Titanium Alloy Ti-15V-3Cr-3Al-3Sn Consolidated Using Equal-Channel Angular Pressing from Machining Chips

Abstract

Machining chips of Ti-15V-3Cr-3Al-3Sn metastable beta titanium alloy were consolidated using back pressure-assisted equal-channel angular pressing (BP-ECAP) using different processing conditions. Near fully dense specimens were obtained after multiple passes done at 500 °C with the aid of different back pressures. SEM and TEM observations show that ECAP resulted in a homogeneous formation of ultrafine equiaxed α grains (~ 180 nm) in the β matrix, due to the generation of an extensive amount of dislocations, vacancies and sub-grain boundaries during ECAP. Most of these α grains showed a random orientation with the β matrix. In addition, the observed grain refinement, increase in dislocation density and age hardening caused by this process resulted in a significant microhardness enhancement in the obtained parts. The microhardness homogeneity was improved as the processing temperature and the number of ECAP passes were increased.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    A. Deshpande, P. Manda, C. Vanitha, and A.K. Singh, Microstructural Characterization of Metastable Beta Titanium Alloys in Hot Rolled and Solution Treated Condition, Mater. Today Proc., 2018, 5(2), p 3657–3663

    CAS  Google Scholar 

  2. 2.

    W. Chen, S. Cao, W. Kou, J. Zhang, Y. Wang, Y. Zha, Y. Pan, Q.M. Hu, Q. Sun, and J. Sun, Origin of the Ductile-to-Brittle Transition of Metastable β-Titanium Alloys: Self-Hardening of ω-Precipitates, Acta Mater., 2019, 170, p 187–204

    CAS  Google Scholar 

  3. 3.

    A. Cox, S. Herbert, J.-P. Villain-Chastre, S. Turner, and M. Jackson, The Effect of Machining and Induced Surface Deformation on the Fatigue Performance of a High Strength Metastable β Titanium Alloy, Int. J. Fatigue, 2019, 124, p 26–33

    CAS  Google Scholar 

  4. 4.

    C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley, Weinheim, 2003

    Google Scholar 

  5. 5.

    R.R. Boyer and R.D. Briggs, The Use of β Titanium Alloys in the Aerospace Industry, J. Mater. Eng. Perform., 2005, 14(6), p 681–685

    CAS  Google Scholar 

  6. 6.

    L. Murr, S.A. Quinones, S. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, F. Medina, and R.B. Wicker, Microstructure and Mechanical Behavior of Ti-6Al-4V Produced by Rapid-Layer Manufacturing, for Biomedical Applications, J. Mech. Behav. Biomed., 2009, 2(1), p 20–32

    CAS  Google Scholar 

  7. 7.

    A. Modrzyński, K. Greześkowiak, and R. Namyślak, Recycling of Titanium Alloys in Plasma Furnace, Czech J. Phys., 2004, 54(3), p C1016–C1021

    Google Scholar 

  8. 8.

    R. Burkhard, W. Hoffelner, and R.C. Eschenbach, Recycling of Metals from Waste with Thermal Plasma, Resour. Conserv. Recycl., 1994, 10(1–2), p 11–16

    Google Scholar 

  9. 9.

    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater Sci., 1999, 45(2), p 103–189

    Google Scholar 

  10. 10.

    R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zechetbauer, and Y.T. Zhu, Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation, JOM, 2006, 58, p 33–39

    Google Scholar 

  11. 11.

    R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater Sci., 2006, 51(7), p 881–981

    CAS  Google Scholar 

  12. 12.

    A.P. Zhilyaev and T.G. Langdon, Using High-Pressure Torsion for Metal Processing: Fundamentals and Applications, Prog. Mater Sci., 2008, 53(6), p 893–979

    CAS  Google Scholar 

  13. 13.

    G. Yang, Z. Li, Y. Yuan, and Q. Lei, Microstructure, Mechanical Properties and Electrical Conductivity of Cu–0.3Mg–0.05Ce Alloy Processed by Equal Channel Angular Pressing and Subsequent Annealing, J. Alloys Compd., 2015, 640(2), p 347–354

    CAS  Google Scholar 

  14. 14.

    J. Zhang, Z. Kang, and L. Zhou, Microstructure Evolution and Mechanical Properties of Mg–Gd–Nd–Zn–Zr Alloy Processed by Equal Channel Angular Pressing, Mat. Sci. Eng. A Struct., 2015, 647, p 184–190

    CAS  Google Scholar 

  15. 15.

    K.A. Darling, M.A. Tschopp, R.K. Guduru, W.H. Yin, Q. Wei, and L. Kecskes, Microstructure and Mechanical Properties of Bulk Nanostructured Cu–Ta Alloys Consolidated by Equal Channel Angular Extrusion, Acta Mater., 2014, 76(5), p 168–185

    CAS  Google Scholar 

  16. 16.

    J. Xu, J. Li, D. Shan, and B. Guo, Microstructural Evolution and Micro/Meso-deformation Behavior in Pure Copper Processed by Equal-Channel Angular Pressing, Mater. Sci. Eng. A Struct., 2016, 664, p 114–125

    CAS  Google Scholar 

  17. 17.

    O. Nejadseyfi, A. Shokuhfar, A. Dabiri, and A. Azimi, Combining Equal-Channel Angular Pressing and Heat Treatment to Obtain Enhanced Corrosion Resistance in 6061 Aluminum Alloy, J. Alloys Compd., 2015, 648, p 912–918

    CAS  Google Scholar 

  18. 18.

    M. Haase, N.B. Khalifa, A.E. Tekkaya, and W. Misiolek, Improving Mechanical Properties of Chip-Based Aluminum Extrudates by Integrated Extrusion and Equal Channel Angular Pressing (iECAP), Mater. Sci. Eng. A Struct., 2012, 539(2), p 194–204

    CAS  Google Scholar 

  19. 19.

    A. Hyodo, C. Bolfarini, and T.T. Ishikawa, Chemistry and Tensile Properties of a Recycled AA7050 via Spray Forming and ECAP/E, Mater. Res., 2012, 15(5), p 739–748

    CAS  Google Scholar 

  20. 20.

    T. Ying, M. Zheng, X. Hu, and K. Wu, Recycling of AZ91 Mg Alloy Through Consolidation of Machined Chips by Extrusion and ECAP, Trans. Nonferr. Met. Soc. China, 2010, 20(2), p s604–s607

    CAS  Google Scholar 

  21. 21.

    Y. Chino, T. Hoshika, J.-S. Lee, and M. Mabuchi, Mechanical Properties of AZ31 Mg Alloy Recycled by Severe Deformation, J. Mater. Res., 2006, 21(3), p 754–760

    CAS  Google Scholar 

  22. 22.

    P. Luo, D.T. McDonald, S. Zhu, S. Palanisamy, M.S. Dargusch, and K. Xia, Analysis of Microstructure and Strengthening in Pure Titanium Recycled from Machining Chips by Equal Channel Angular Pressing Using Electron Backscatter Diffraction, Mater. Sci. Eng. A Struct., 2012, 538(3), p 252–258

    CAS  Google Scholar 

  23. 23.

    P. Luo, D.T. McDonald, W. Xu, S. Palanisamy, M.S. Dargusch, and K. Xia, A Modified Hall–Petch Relationship in Ultrafine-Grained Titanium Recycled from Chips by Equal Channel Angular Pressing, Scr. Mater., 2012, 66(10), p 785–788

    CAS  Google Scholar 

  24. 24.

    Q. Shi, Y.Y. Tse, and R.L. Higginson, Effects of Processing Parameters on Relative Density, Microhardness and Microstructure of Recycled Ti–6Al–4V from Machining Chips Produced by Equal Channel Angular Pressing, Mater. Sci. Eng. A Struct., 2016, 651, p 248–258

    CAS  Google Scholar 

  25. 25.

    D.T. McDonald, P. Luo, S. Palanisamy, M.S. Dargusch, and K. Xia, Ti-6Al-4V Recycled from Machining Chips by Equal Channel Angular Pressing, Key Eng. Mater., 2012, 520, p 295–300

    CAS  Google Scholar 

  26. 26.

    D.T. McDonald, E.W. Lui, S. Palanisamy, M.S. Dargusch, and K. Xia, Achieving Superior Strength and Ductility in Ti-6Al-4V Recycled from Machining Chips by Equal Channel Angular Pressing, Metall. Mater. Trans. A, 2014, 45(9), p 4089–4102

    CAS  Google Scholar 

  27. 27.

    P. Luo, D.T. McDonald, S. Palanisamy, M.S. Dargusch, and K. Xia, Ultrafine-Grained Pure Ti recycled by Equal Channel Angular Pressing with High Strength and Good Ductility, J. Mater. Process. Tech., 2013, 3, p 469–476

    Google Scholar 

  28. 28.

    Q. Shi, Y.Y. Tse, R. Muhammad, A. Roy, V.V. Silberschmidt, and R.L. Higginson, Effect of Machining on Shear-Zone Microstructure in Ti-15V-3Cr-3Al-3Sn: Conventional and Ultrasonically Assisted Turning, J. Mater. Eng. Perform., 2016, 25(9), p 3766–3773

    CAS  Google Scholar 

  29. 29.

    R. Lapovok, The Positive Role of Back-Pressure in Equal Channel Angular Extrusion, J. Mater. Sci., 2006, 40(2), p 341–346

    Google Scholar 

  30. 30.

    F. Kang, J.T. Wang, Y.L. Su, and K. Xia, Finite Element Analysis of the Effect of Back Pressure During Equal Channel Angular Pressing, J. Mater. Sci., 2007, 42, p 1491–1500

    CAS  Google Scholar 

  31. 31.

    E. Ceretti, L. Fratini, F. Gagliardi, and C. Giardini, A New Approach to Study Material Bonding in Extrusion Porthole Dies, CIRP Ann., 2009, 58(1), p 259–262

    Google Scholar 

  32. 32.

    T. Makino, R. Chikaizumi, T. Nagaoka, T. Furuhara, and T. Makino, Microstructure Development in a Thermomechanically Processed Ti 15V 3Cr 3Sn 3Al Alloy, Mater. Sci. Eng. A Struct., 1996, 213(1–2), p 51–60

    Google Scholar 

  33. 33.

    S. Nag, R. Banerjee, R. Srinivasan, J.Y. Hwang, M. Harper, and H.L. Fraser, ω-Assisted nucleation and growth of α precipitates in the Ti–5Al–5Mo–5V–3Cr–0.5Fe β titanium alloy, Acta Mater., 2009, 57(7), p 2136–2147

    CAS  Google Scholar 

  34. 34.

    T. Muruhara and T. Maki, Variant selection in heterogeneous nucleation on defects in diffusional phase transformation and precipitation, Mater. Sci. Eng. A Struct., 2001, 312(1), p 145–154

    Google Scholar 

  35. 35.

    T. Li, D. Kent, G. Sha, M.S. Dargusch, and J.M. Cairney, Precipitation of the α-Phase in an Ultrafine Grained Beta-Titanium Alloy Processed by Severe Plastic Deformation, Mater. Sci. Eng. A Struct., 2014, 605, p 144–150

    CAS  Google Scholar 

  36. 36.

    X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, and R.Z. Valiev, Grain Boundaries in Ultrafine Grained Materials Processed by Severe Plastic Deformation and Related Phenomena, Mater. Sci. Eng. A Struct., 2012, 540(4), p 1–12

    CAS  Google Scholar 

  37. 37.

    D. Yamaguchi, Z. Horita, M. Nemoto, and T.G. Langdon, Significance of Adiabatic Heating in Equal-Channel Angular Pressing, Scr. Mater., 1999, 41(8), p 791–796

    CAS  Google Scholar 

  38. 38.

    Y. Nishida, T. Ando, M. Nagase, S.-W. Lim, I. Shigematsu, and A. Watazu, Billet Temperature Rise During Equal-Channel Angular Pressing, Scr. Mater., 2002, 46(3), p 211–216

    CAS  Google Scholar 

  39. 39.

    Q.X. Pei, B.H. Hu, C. Lu, and Y.Y. Wang, A Finite Element Study of the Temperature Rise During Equal Channel Angular Pressing, Scr. Mater., 2003, 49(4), p 303–308

    CAS  Google Scholar 

  40. 40.

    Y. Xu, J. Zhang, Y. Bai, and M.A. Meyers, Shear Localization in Dynamic Deformation: Microstructural Evolution, Metall. Mater. Trans. A, 2008, 39(4), p 811–843

    Google Scholar 

  41. 41.

    S.V. Divinski, G. Reglitz, H. Rösner, Y. Estrin, and G. Wilde, Ultra-Fast Diffusion Channels in Pure Ni Severely Deformed by Equal-Channel Angular Pressing, Acta Mater., 2011, 59(5), p 1974–1985

    CAS  Google Scholar 

  42. 42.

    S.V. Divinski, J. Ribbe, D. Baither, G. Schmitz, G. Reglitz, H. Rösner, K. Sato, Y. Estrin, and G. Wilde, Nano- and Micro-scale Free Volume in Ultrafine Grained Cu–1 wt%Pb Alloy Deformed by Equal Channel Angular Pressing, Acta Mater., 2009, 57(19), p 5706–5717

    CAS  Google Scholar 

  43. 43.

    D. Setman, E. Schafler, E. Korznikova, and M.J. Zehetbauer, The Presence and Nature of Vacancy Type Defects in Nanometals Detained by Severe Plastic Deformation, Mater. Sci. Eng. A Struct., 2008, 493(1–2), p 116–122

    Google Scholar 

  44. 44.

    M.J. Zehetbauer, G. Steiner, E. Schafler, A.V. Korznikov, and E.A. Korznikova, Deformation Induced Vacancies with Severe Plastic Deformation: Measurements and Modelling, Mater. Sci. Forum, 2006, 503(1), p 57–64

    Google Scholar 

  45. 45.

    W. Xu, D.P. Edwards, X. Wu, M. Stoica, M. Calin, U. Kühn, J. Eckert, and K. Xia, Promoting Nano/Ultrafine-Duplex Structure via Accelerated α Precipitation in a β-Type Titanium Alloy Severely Deformed by High-Pressure Torsion, Scr. Mater., 2013, 68(1), p 67–70

    CAS  Google Scholar 

  46. 46.

    X. Sauvage, F. Wetscher, and P. Pareige, Mechanical Alloying of Cu and Fe Induced by Severe Plastic Deformation of a Cu–Fe Composite, Acta Mater., 2005, 53(7), p 2127–2135

    CAS  Google Scholar 

  47. 47.

    W. Xu, X. Wu, M. Stoica, M. Calin, U. Kühn, J. Eckert, and K. Xia, On the Formation of an Ultrafine-Duplex Structure Facilitated by Severe Shear Deformation in a Ti–20Mo β-Type Titanium Alloy, Acta Mater., 2012, 60(13–14), p 5067–5078

    CAS  Google Scholar 

  48. 48.

    Q. Guo, Q. Wang, X.L. Han, D.L. Sun, X. Wang, and G.H. Wu, Crystalline Characteristics of Alpha Precipitates in Ti-15V-3Sn-3Al-3Cr Alloy, Micron, 2010, 41(6), p 565–570

    CAS  Google Scholar 

  49. 49.

    H.-H. Hsu, Y.-C. Wu, and L.-W. Tsay, Notch Brittleness of Ti–15V–3Cr–3Sn–3Al Alloys, Mater. Sci. Eng. A Struct., 2012, 545, p 20–25

    CAS  Google Scholar 

  50. 50.

    R. Santhosh, M. Geetha, V.K. Saxena, and M. Nageswararao, Studies on Single and Duplex Aging of Metastable Beta Titanium Alloy Ti–15V–3Cr–3Al–3Sn, J. Alloys Compd., 2014, 605(9), p 222–229

    CAS  Google Scholar 

  51. 51.

    J. Ma and Q. Wang, Aging Characterization and Application of Ti–15–3 Alloy, Mater. Sci. Eng. A Struct., 1998, 243(1), p 150–154

    Google Scholar 

  52. 52.

    H.C. Lin and L.M. Wang, Improved Mechanical Properties of Ti–15V–3Cr–3Sn–3Al Alloy by Electron Beam Welding Process Plus Heat Treatments and Its Microstructure Evolution, Mater. Chem. Phys., 2011, 126(3), p 891–897

    CAS  Google Scholar 

  53. 53.

    V. Sklenicka, J. Dvorak, M. Svoboda, P. Kral and M. Kvapilova, Equal-Channel Angular Pressing and Creep in Ultrafine-Grained Aluminium and Its Alloys, Aluminium Alloys: New Trends in Fabrication and Applications, Zaki Ahmad, IntechOpen, Edited by Z. Ahmad, 2012.

Download references

Acknowledgments

The authors are greatly indebted to Dr Riaz Muhammad and Dr Anish Roy from School of Mechanical and Manufacturing Engineering in Loughborough University for providing machining chips. The authors also acknowledge Dr Zhaoxia Zhou and Mr Scott Doak in Loughborough Materials Characterization Centre (LMCC) for their help in TEM analysis. The authors are grateful to the Nature Science Foundation of Guangdong (Grant No. 2018A030313127), the Guangdong Academy of Sciences Project and Development (Grant No. 2018GDASCX-0961), Guangzhou Science and Technology Project (201906040007).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Q. Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Tse, Y.Y. & Higginson, R.L. Microstructure Evolution and Microhardness Analysis of Metastable Beta Titanium Alloy Ti-15V-3Cr-3Al-3Sn Consolidated Using Equal-Channel Angular Pressing from Machining Chips. J. of Materi Eng and Perform 29, 4142–4153 (2020). https://doi.org/10.1007/s11665-020-04913-8

Download citation

Keywords

  • consolidation
  • equal-channel angular pressing
  • precipitation
  • Ti-15V-3Cr-3Al-3Sn
  • ultrafine-grained materials