Carbide Evolution in High-Carbon Martensitic Stainless Cutlery Steels during Austenitizing

Abstract

The carbide phase is critical in high-carbon martensitic stainless steels (HCMSS) used for cutlery. In this study, carbide evolution during the austenitizing of different HCMSS (5Cr15MoV, 7Cr17MoV, 9Cr14MoV, and 9Cr18MoV) and its effect on the microstructure and mechanical properties are investigated. The statistical analysis of carbides suggests that the dissolution of small-sized secondary carbides (< 0.5 μm) improves the hardness. The improvement in toughness is related to the increase in the volume fraction of the retained austenite determined by the dissolution of the larger secondary carbides (> 0.5 μm). Due to the influence of the elemental diffusion distance, the interfacial energy, and directional dissolution, small-sized carbides are more soluble than large-size carbides, which can be determined by the change of the ratio of Cr/Fe (wt.%) of carbides.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    H.M. Cobb, The History of Stainless Steel, ASM International, Cleveland, 2010

    Google Scholar 

  2. 2.

    K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng., A, 2009, 65(4–6), p 39–104

    Article  Google Scholar 

  3. 3.

    Q. Bin, M. Yongzhu, and J. Laizhu, Research on the Heat Treatment of Tool Steel 5Cr15MoV, Baosteel Tech. Res., 2011, 5(3), p 51

    Google Scholar 

  4. 4.

    G.D. Andres, Caruana, and F.L. Alvarez, Control of M23C6 Carbides in 0.45C-13Cr Martensitic Stainless Steel by Means of Three Representative Heat Treatment Parameters, Mater. Sci. Eng., A, 1998, 241(1–2), p 211–215

    Article  Google Scholar 

  5. 5.

    J. Li, C. Zhang, B. Jiang, L. Zhou, and Y. Liu, Effect of Large-Size M 23 C 6-Type Carbides on the Low-Temperature Toughness of Martensitic Heat-Resistant Steels, J. Alloy. Compd., 2016, 685, p 248–257

    CAS  Article  Google Scholar 

  6. 6.

    Q.-T. Zhu, J. Li, C.-B. Shi, and W.-T. Yu, Effect of Quenching Process on the Microstructure and Hardness of High-Carbon Martensitic Stainless Steel, J. Mater. Eng. Perform., 2015, 24(11), p 4313–4321

    CAS  Article  Google Scholar 

  7. 7.

    J. Karltun, K. Vogel, M. Bergstrand, and J. Eklund, Maintaining Knife Sharpness in Industrial Meat Cutting: A Matter of Knife or Meat Cutter Ability, Appl. Ergon., 2016, 56, p 92–100

    CAS  Article  Google Scholar 

  8. 8.

    J. Marsot, L. Claudon, and M. Jacqmin, Assessment of Knife Sharpness by Means of a Cutting Force Measuring System, Appl. Ergon., 2007, 38(1), p 83–89

    Article  Google Scholar 

  9. 9.

    L.D. Barlow and M. Du Toit, Effect of Austenitizing Heat Treatment on the Microstructure and Hardness of Martensitic Stainless Steel AISI, 420, J. Mater. Eng. Perform., 2011, 21(7), p 1327–1336

    Article  Google Scholar 

  10. 10.

    X.F. Zhou, F. Fang, J.Q. Jiang, W.L. Zhu, and H.X. Xu, Refining Carbide Dimensions in AISI, M2 High Speed Steel by Increasing Solidification Rates and Spheroidising Heat Treatment, Mater. Sci. Technol., 2014, 30(1), p 116–122

    Article  Google Scholar 

  11. 11.

    K. Srivatsa, P. Srinivas, G. Balachandran, V. Balasubramanian, Improvement of impact toughness by modified hot working and heat treatment in 13%Cr martensitic stainless steel, Mater. Sci. Eng.:A, 2016, 677, p 240-251

  12. 12.

    S.K. Bonagani, V. Bathula, and V. Kain, Influence of Tempering Treatment on Microstructure and Pitting Corrosion of 13 wt.% Cr Martensitic Stainless Steel, Corros. Sci., 2018, 131, p 340–354

    CAS  Article  Google Scholar 

  13. 13.

    A. Dalmau, C. Richard, and A. Igual-Muñoz, Degradation Mechanisms in Martensitic Stainless Steels: Wear, Corrosion and Tribocorrosion Appraisal, Tribol. Int., 2018, 121, p 167–179

    CAS  Article  Google Scholar 

  14. 14.

    M.A. Neri and R. Colás, Analysis of a Martensitic Stainless Steel that Failed Due to the Presence of Coarse Carbides, Mater. Charact., 2001, 47(3), p 283–289

    CAS  Article  Google Scholar 

  15. 15.

    J.D. Verhoeven, A.H. Pendray, and H.F. Clark, Wear Tests of Steel Knife Blades, Wear, 2008, 265(7), p 1093–1099

    CAS  Article  Google Scholar 

  16. 16.

    T. Tsuchiyama, Y. Ono, and S. Takaki, Microstructure Control for Toughening a High Carbon Martensitic Stainless Steel, ISIJ Int., 2000, 40(Suppl), p S184–S188

    CAS  Article  Google Scholar 

  17. 17.

    F. Vodopivec, J. Vojvodič-Tuma, B. Šuštaršič, R. Celin, and M. Jenko, Dependence of Accelerated Creep Rate on Carbide Particle Distribution in Martensite for 0·18C-11·5Cr-0·29 V Steel, Mater. Sci. Technol., 2011, 27(5), p 937–942

    CAS  Article  Google Scholar 

  18. 18.

    Z. Hongliang, H. Xunzeng, and Y. Yitao, Effect of Spheroidizing Annealing Process on Carbide Spheroidization of 55 MnB Steel, Heat Treat. Metals, 2015, 40(2), p 135–139

    Google Scholar 

  19. 19.

    W.T. Yu, J. Li, C.B. Shi, and Q.T. Zhu, Effect of Spheroidizing Annealing on Microstructure and Mechanical Properties of High-Carbon Martensitic Stainless Steel 8Cr13MoV, J. Mater. Eng. Perform., 2016, 26(2), p 1–10

    Google Scholar 

  20. 20.

    A. Stormvinter, G. Miyamoto, T. Furuhara, P. Hedström, and A. Borgenstam, Effect of Carbon Content on Variant Pairing of Martensite in Fe-C Alloys, Acta Mater., 2012, 60(20), p 7265–7274

    CAS  Article  Google Scholar 

  21. 21.

    Z. Zhang, Y. Liu, K. Zhang, J.-J. Sun, Q. Xia, and L.-H. Gao, Apparent Morphology and Structure of Martensite in Ultrahigh Carbon Steel, Trans. Mater. Heat Treat., 2010, 31(9), p 33–36

    Google Scholar 

  22. 22.

    M. Dangshen, H. Chi, Z. Jian, and Q. Yong, Microstructure and Mechanical Properties of Martensitic Stainless Steel 6Crl5MoV, J. Iron. Steel Res. Int., 2012, 19(3), p 56–61

    Article  Google Scholar 

  23. 23.

    G.F.D. Silva, S.S.M. Tavares, M.R. Silva, and H.F.G.D. Abreu, Influence of Heat Treatments on Toughness and Sensitization of a Ti-Alloyed Supermartensitic Stainless Steel, J. Mater. Sci., 2011, 46(24), p 7737–7744

    Article  Google Scholar 

  24. 24.

    H. Fu, Y. Qu, J. Xing, X. Zhi, Z. Jiang, M. Li, and Y. Zhang, Investigations on Heat Treatment of a High-Speed Steel Roll, J. Mater. Eng. Perform., 2008, 17(4), p 535–542

    CAS  Article  Google Scholar 

  25. 25.

    W. Song, P.-P. Choi, G. Inden, U. Prahl, D. Raabe, and W. Bleck, On the Spheroidized Carbide Dissolution and Elemental Partitioning in High Carbon Bearing Steel 100Cr6, Metall. Mater. Trans. A, 2013, 45(2), p 595–606

    Article  Google Scholar 

  26. 26.

    H.B. Aaron and G.R. Kotler, Second Phase Dissolution, Metall. Trans., 1971, 2(2), p 393–408

    CAS  Article  Google Scholar 

  27. 27.

    Z.-K. Liu, L. Höglund, and B. Jönsson, An Experimental and Theoretical Study of Cementite Dissolution in an Fe-Cr-C Alloy, Metall. Trans. A, 1991, 22(8), p 1745–1752

    Article  Google Scholar 

  28. 28.

    S.B. Hosseini, R. Dahlgren, K. Ryttberg, and U. Klement, Dissolution of Iron-chromium Carbides during White Layer Formation Induced by Hard Turning of AISI, 52100 Steel, Proc. CIRP, 2014, 14, p 107–112

    Article  Google Scholar 

  29. 29.

    J.H. Kang and P.E.J. Rivera-Díaz-del-Castillo, Carbide Dissolution in Bearing Steels, Comput. Mater. Sci., 2013, 67, p 364–372

    CAS  Article  Google Scholar 

  30. 30.

    J. Bratberg, J. Ãgren, and K. Frisk, Diffusion Simulations of MC and M7C3 Carbide Coarsening in bcc and fcc Matrix Utilising New Thermodynamic and Kinetic Description, Mater. Sci. Technol., 2008, 24(6), p 695–704

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are would like to acknowledge the financial support from the National Key R&D Program of China under the Project No. 2017YFB0703003.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hongshan Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhao, H. & Dong, H. Carbide Evolution in High-Carbon Martensitic Stainless Cutlery Steels during Austenitizing. J. of Materi Eng and Perform 29, 3868–3875 (2020). https://doi.org/10.1007/s11665-020-04912-9

Download citation

Keywords

  • austenitizing
  • carbide phase
  • high-carbon martensitic stainless steels (HCMSS)
  • mechanical performance
  • microstructure evolution