Hot Deformation Behavior and Processing Maps of a 9Ni590B Steel


To increase the hot workability and provide proper hot forming parameters of a 9Ni590B steel for the simulation and production, the hot deformation behavior of the 9Ni590B steel is investigated through isothermal compression tests using a Gleeble-3180 thermal–mechanical simulator over a temperature range of 850-1200 °C with strain rates of 0.001-5 s−1. The results indicate that as the deformation temperature increases and the strain rate decreases, the flow stress of the 9Ni590B steel decreases. The deformation–activation energy was calculated to be 364.99 kJ/mol based on the flow stress curve data. The dynamic material model (DMM) was used to establish the process map of the thermal deformation for the 9Ni590B steel. The results show that the optimal deformation conditions for the 9Ni590B steel hot working are with a temperature range of 1100-1200 °C and a strain rate range of 0.001-0.01 s−1. The validity of the calculations was confirmed by observing the microstructure of the 9Ni590B steel sample under the optimal thermal process parameters.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    X. Wang, The State-of-the-Art in Natural Gas Production, J. Nat. Gas Sci. Eng., 2009, 1, p 14–24

    Google Scholar 

  2. 2.

    D. Liu, X. Yang, L. Hou et al., Research and Application of Ultralow Temperature 9Ni Steel for LNG Storage Tank, J. Iron Steel Res., 2009, 21(9), p 1–5

    CAS  Google Scholar 

  3. 3.

    F. Shepeng Chen, Application Analysis and Discussion of 9Ni Steel in LNG Storage Tank, Chem. Equip. Technol., 2009, 30(6), p 40–48

    Google Scholar 

  4. 4.

    N. Nakada, J. Syarif, T. Tsuchigama et al., Improvement of Strength-Ductility Balance by Copper Addition in 9%Ni Steel, Mater. Sci. Eng. A, 2004, 374, p 137–144

    Google Scholar 

  5. 5.

    H. Zhao, R. Liu, C. Wang et al., Influence of QLT and QT Heat Treatment Process on Properties of 9Ni Steel, Heat Treat. Met., 2018, 43(12), p 100–104

    Google Scholar 

  6. 6.

    J. Zhai, Research on Microstructure of 9Ni Steel for Low Temperature Vessel with Different Impact Property, Metall. Anal., 2015, 35(6), p 19–25

    CAS  Google Scholar 

  7. 7.

    Z. Li, X. Fan, R. Gong et al., Effect of Heat Treatment on Low Temperature Toughness of 9Ni Steel, Mech. Eng., 2018, 3, p 86–90

    Google Scholar 

  8. 8.

    Y. Liu, K. Shi, Y. Zhou et al., Heat Treatment and Low Temperature Toughness of 9Ni Steel, Mater. Heat Treat., 2007, 36(16), p 77–83

    Google Scholar 

  9. 9.

    C.C. Kinney, K.R. Pytlewski, A.G. Khachaturyan, and J.W. Morris, Jr., The Microstructure of Lath Martensite in Quenched 9Ni Steel, Acta Mater., 2014, 69, p 372–385

    CAS  Google Scholar 

  10. 10.

    X. Yang, D. Liu, L. Hou et al., Effect of Tempering Temperature on Low-Temperature Toughness of 9Ni Steel, J. Iron Steel Res., 2010, 22(9), p 22–27

    Google Scholar 

  11. 11.

    X. Zhao, T. Pan, Q. Wang et al., Effect of Tempering Temperature on Microstructure and Mechanical Properties of Steel Containing Ni of 9%, J. Iron Steel Res. Int., 2011, 18(5), p 47–51

    CAS  Google Scholar 

  12. 12.

    K. Zhang, D. Tang, and W. Huibin, Effect of Tempering Time on Reversed Austenite and Cryogenic Toughness of 9Ni Steel, Heat Treat. Met., 2012, 37(3), p 85–88

    CAS  Google Scholar 

  13. 13.

    K. Guo, J. Zhu, and B. Wang, Influence of Two-Phase Region Heat Treatment Cryogenic Toughness in on Low Temperature Toughness of 9Ni Steel, J. Liaoning Shihua Univ., 2010, 30(2), p 26–28

    Google Scholar 

  14. 14.

    K. Zhang, W. Huibin, and D. Tang, High Temperature Deformation Behavior of Fe-9Ni-C Alloy, J. Iron Steel Res. Int., 2012, 19(5), p 58–62

    Google Scholar 

  15. 15.

    H. Zhao, R. Liu, C. Wang et al., Hot Deformation Behavior and Energy Dissipation Diagram of 9Ni Martensite Stainless Steel, Iron Steel, 2018, 53(9), p 74–79

    Google Scholar 

  16. 16.

    Y. Yang, Q. Cai, W. Huibin et al., Study on Hot Deformation Behaviors of 9Ni Steel and Its Mathematical Model, Mater. Heat Treat., 2009, 38(12), p 1–3

    CAS  Google Scholar 

  17. 17.

    K. Arun Babu, S. Mandal, C.N. Athreya et al., Hot Deformation Characteristics and Processing Map of a Phosphorous Modified Super Austenitic Stainless Steel, Mater. Des., 2017, 115, p 262–275

    Google Scholar 

  18. 18.

    Z. Yang, F. Zhang, C. Zheng et al., Study on Hot Deformation Behaviour and Processing Maps of Low Carbon Bainitic Steel, Mater. Des., 2015, 66, p 258–266

    CAS  Google Scholar 

  19. 19.

    Y.C. Lin, L.-T. Li, Y.-C. Xia, and Y.-Q. Jiang, Hot Deformation and Processing Map of a Typical Al-Zn-Mg-Cu Alloy, J. Alloys Compd., 2013, 550, p 438–445

    CAS  Google Scholar 

  20. 20.

    P. Zhang, H. Chao, C. Ding et al., Plastic Deformation Behavior and Processing Maps of a Ni-Based Superalloy, Mater. Des., 2015, 65, p 575–584

    CAS  Google Scholar 

  21. 21.

    S. Anbuselvan and S. Ramanathan, Hot Deformation and Processing Maps of Extruded ZE41A Magnesium Alloy, Mater. Des., 2010, 31, p 2319–2323

    CAS  Google Scholar 

  22. 22.

    B.N. Sahoo and S.K. Panigrahi, Deformation Behavior and Processing Map Development of AZ91 Mg Alloy with and Without Addition of Hybrid In Situ TiC + TiB2 Reinforcement, J. Alloys Compd., 2019, 776, p 865–882

    CAS  Google Scholar 

  23. 23.

    Y. Sun, R. Wang, J. Ren, C. Peng, and Y. Feng, Hot Deformation Behavior of Mg-8Li-3Al-2Zn-0.2Zr Alloy Based on Constitutive Analysis, Dynamic Recrystallization Kinetics, and Processing Map, Mech. Mater., 2019, 131, p 158–168

    Google Scholar 

  24. 24.

    W. Cheng, Y. Bai, S. Ma, L. Wang, H. Wang, and Yu Hui, Hot Deformation Behavior and Workability Characteristic of a Fine-Grained Mg-8Sn-2Zn-2Al Alloy with Processing Map, J. Mater. Sci. Technol., 2019, 35, p 1198–1209

    Google Scholar 

  25. 25.

    C-c Sun, K. Liu, Z-h Wang, S-b Li, X. Du, and W-b Du, Hot Deformation Behaviors and Processing Maps of Mg-Zn-Er Alloys Based on Gleeble-1500 Hot Compression Simulation, Trans. Nonferrous Met. Soc. China, 2016, 26, p 3123–3134

    CAS  Google Scholar 

  26. 26.

    K. Li, Z. Chen, T. Chen, J. Shao, R. Wang, and C. Liu, Hot Deformation and Dynamic Recrystallization Behaviors of Mg-Gd-Zn Alloy with LPSO Phases, J. Alloys Compd., 2019, 792, p 894–906

    CAS  Google Scholar 

  27. 27.

    H.Z. Zhao, L. Xiao, P. Ge, J. Sun, and Z.P. Xi, Hot Deformation Behavior and Processing Maps of Ti-1300 Alloy, Mater. Sci. Eng. A, 2014, 604, p 111–116

    CAS  Google Scholar 

  28. 28.

    Q. Meng, C. Bai, and X. Dongsheng, Flow Behavior and Processing Map for Hot Deformation of ATI425 Titanium Alloy, J. Mater. Sci. Technol., 2018, 34, p 679–688

    Google Scholar 

  29. 29.

    D. Zhihao, S. Jiang, and K. Zhang, The Hot Deformation Behavior and Processing Map of Ti-47.5Al-Cr-V Alloy, Mater. Des., 2018, 156, p 262–271

    Google Scholar 

  30. 30.

    P. Wan, K. Wang, H. Zou, L. Shiqiang, and X. Li, Study on Hot Deformation and Process Parameters Optimization of Ti-10.2Mo-4.9Zr-5.5Sn Alloy, J. Alloys Compd., 2019, 777, p 812–820

    CAS  Google Scholar 

  31. 31.

    N. Cui, F. Kong, X. Wang, Y. Chen, and H. Zhou, Hot Deformation Behavior and Dynamic Recrystallization of a β-Solidifying TiAl Alloy, Mater. Sci. Eng. A, 2016, 652, p 231–238

    CAS  Google Scholar 

  32. 32.

    H. He, Y. Yi, J. Cui, and S. Huang, Hot Deformation Characteristics and Processing Parameter Optimization of 2219 Al Alloy Using Constitutive Equation and Processing Map, Vacuum, 2019, 160, p 293–302

    CAS  Google Scholar 

  33. 33.

    Y. Sun, Z. Cao, Z. Wan, H. Lianxi, W. Ye, and N. Li, 3D Processing Map and Hot Deformation Behavior of 6A02 Aluminum Alloy, J. Alloys Compd., 2018, 742, p 356–368

    CAS  Google Scholar 

  34. 34.

    Y. Liu, C. Geng, Q. Lin, Y. Xiao, X. Junrui, and W. Kang, Study on Hot Deformation Behavior and Intrinsic Workability of 6063 Aluminum Alloys Using 3D Processing Map, J. Alloys Compd., 2017, 713, p 212–221

    CAS  Google Scholar 

  35. 35.

    D.-G. He, Y.C. Lin, M.-S. Chen, J. Chen, D.-X. Wen, and X.-M. Chen, Effect of Pre-Treatment on Hot Deformation Behavior and Processing Map of an Aged Nickel-Based Superalloy, J. Alloys Compd., 2015, 649, p 1075–1084

    CAS  Google Scholar 

  36. 36.

    W. Yuting, Y. Liu, C. Li, X. Xia, Y. Huang, H. Li, and H. Wang, Deformation Behavior and Processing Maps of Ni3Al-Based Superalloy During Isothermal Hot Compression, J. Alloys Compd., 2017, 712, p 687–695

    Google Scholar 

  37. 37.

    D.-G. He, Y.C. Lin, X.-Y. Jiang, L.-X. Yin, L.-H. Wang, and Q. Wu, Dissolution Mechanisms and Kinetics of δ Phase in an Aged Ni-Based Superalloy in Hot Deformation Process, Mater. Des., 2018, 156, p 262–271

    CAS  Google Scholar 

  38. 38.

    Y.C. Dong-Xu Wen, H.-B.L. Lin, X.-M. Chen, J. Deng, and L.-T. Li, Hot Deformation Behavior and Processing Map of a Typical Ni-Based Superalloy, Mater. Sci. Eng. A, 2014, 591, p 183–192

    Google Scholar 

  39. 39.

    Z. Wan, H. Lianxi, Yu Sun, T. Wang, and Z. Li, Hot Deformation Behavior and Processing Workability of a Ni-Based Alloy, J. Alloys Compd., 2018, 769, p 367–375

    CAS  Google Scholar 

  40. 40.

    A. Biswas, G. Singh, S.K. Sarkar, M. Krishnan, and U. Ramamurty, Hot Deformation Behavior of Ni-Fe-Ga-Based Ferromagnetic Shape Memory Alloy—A Study Using Processing Map, Intermetallics, 2014, 54, p 69–78

    CAS  Google Scholar 

  41. 41.

    W. Yunsheng, Z. Liu, X. Qin, C. Wang, and L. Zhou, Effect of Initial State on Hot Deformation and Dynamic Recrystallization of Ni-Fe Based Alloy GH984G for Steam Boiler Applications, J. Alloys Compd., 2019, 795, p 370–384

    Google Scholar 

  42. 42.

    C. Zhao, Z. Wang, D. Pan, D.-x. Li, Z. Luo, D. Zhang, C. Yang, and W. Zhang, Effect of Si and Ti on Dynamic Recrystallization of High-Performance Cu-15Ni-8Sn Alloy During Hot Deformation, Trans. Nonferrous Met. Soc. China, 2019, 29, p 2556–2565

    CAS  Google Scholar 

  43. 43.

    Y. Geng, X. Li, H. Zhou, Y. Zhang, Y. Jia et al., Effect of Ti Addition on Microstructure Evolution and Precipitation in Cu-Co-Si Alloy During Hot Deformation, J. Alloys Compd., 2020, 821, p 153518

    CAS  Google Scholar 

  44. 44.

    A. Sarkar, M.J.N.V. Prasad, and S.V.S. Narayana Murty, Effect of Initial Grain Size on Hot Deformation Behaviour of Cu-Cr-Zr-Ti Alloy, Mater. Charact., 2020, 160, p 110112

    CAS  Google Scholar 

  45. 45.

    B. Wang, Y. Zhang, B. Tian, J. An, A.A. Volinsky, H. Sun, Y. Liu, and K. Song, Effects of Ce Addition on the Cu-Mg-Fe Alloy Hot Deformation Behavior, Vacuum, 2018, 155, p 594–603

    CAS  Google Scholar 

  46. 46.

    L. Zhang, Q. Wang, G. Liu, W. Guo, H. Jiang, and W. Ding, Effect of SiC Particles and the Particulate Size on the Hot Deformation and Processing Map of AZ91 Magnesium Matrix Composites, Mater. Sci. Eng. A, 2017, 707, p 315–324

    CAS  Google Scholar 

  47. 47.

    K.-k. Deng, J.-c. Li, X. Fang-jun, K.-b. Nie, and W. Liang, Hot Deformation Behavior and Processing Maps of Fine-grained SiCp/AZ91 Composite, Mater. Des., 2015, 67, p 72–81

    CAS  Google Scholar 

  48. 48.

    H.J. McQueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A, 2002, 322(1–2), p 43–63

    Google Scholar 

  49. 49.

    C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32

    Google Scholar 

  50. 50.

    Y.V.R.K. Prasad and T. Seshacharyulu, Processing Maps for Hot Working of Titanium Alloys, Mater. Sci. Eng. A, 1998, 243, p 82–88

    Google Scholar 

  51. 51.

    E.X. Pu, W.J. Zheng, J.Z. Xiang, Z.G. Song, and J. Li, Hot Deformation Characteristic and Processing Map of Superaustenitic Stainless Steel S32654, Mater. Sci. Eng. A, 2014, 598, p 174–182

    CAS  Google Scholar 

Download references


The author is grateful for the National Nature Science Foundation of China (Grant No. 51671125) and the Shanghai Engineering Research Center of Large Piece Hot Manufacturing (18DZ2253400).

Author information



Corresponding author

Correspondence to Rongbin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, R., Chen, Y., Jiang, C. et al. Hot Deformation Behavior and Processing Maps of a 9Ni590B Steel. J. of Materi Eng and Perform (2020).

Download citation


  • 9Ni590B steel
  • constitutive equation
  • dynamic recrystallization (DRX)
  • hot compression
  • microstructure