Experimental Investigation and Optimization of Wire Electrical Discharge Machining for Surface Characteristics and Corrosion Rate of Biodegradable Mg Alloy

Abstract

Wire electrical discharge machining (Wire EDM) is a spark erosion process that modifies the surface characteristics by creating overlapped craters and oxides on the machined surface. This oxide and metamorphic layer can be advantageous for Mg alloy in terms of improved corrosion resistance and osteoblast activities. In the current work, face-centered central composite design has been used to carry out the experiments on Wire EDM to study the influence of process parameters and to generate the correlation between input parameters and performance characteristics of ZM21 Mg alloy. Performance characteristics chosen for Mg alloy machining are cutting speed, surface roughness and corrosion rate. To identify the important input parameters and a numerical model that fits the response characteristics, analysis of variance has been used. Using a scanning electron microscope (SEM), it has been found that Wire EDM resulted in overlapped craters and formation of µ-cracks on the machined surface, influenced by discharge energy developed across the electrodes. SEM and XRF (x-ray fluorescence) analysis confirm the formation of a metamorphic layer on the machined surface which leads to corrosion resistance improvement as compared to polished ZM21 Mg alloy. Under response surface methodology, desirability function was utilized to obtain the optimal solutions for multi-response characteristics which were validated experimentally and the sample machined at optimal setting shows improved surface morphology with an oxide layer having uniform nanoscale structure. Electrochemical impedance spectroscopy analysis (for 7 days) shows an increasing trend of corrosion resistance for machined samples, which supports the application of Wire EDM for Mg alloy implants.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    V. Kavimani, K.S. Prakash, and T. Thankachan, Influence of Machining Parameters on Wire Electrical Discharge Machining Performance of Reduced Graphene Oxide/Magnesium Composite and Its Surface Integrity Characteristics, Compos. Part B Eng., 2019, 167, p 621–630. https://doi.org/10.1016/j.compositesb.2019.03.031

    CAS  Article  Google Scholar 

  2. 2.

    S. Vijayabhaskar and T. Rajmohan, Experimental Investigation and Optimization of Machining Parameters in WEDM of Nano-SiC Particles Reinforced Magnesium Matrix Composites, Silicon, 2019, 11(4), p 1701–1716

    CAS  Article  Google Scholar 

  3. 3.

    H. Bisaria and P. Shandilya, Surface Integrity of Ni-Rich NiTi Shape Memory Alloy at Optimized Level of Wire Electric Discharge Machining Parameters, J. Mater. Eng. Perform., 2019, 28(12), p 7663–7675. https://doi.org/10.1007/s11665-019-04477-2

    CAS  Article  Google Scholar 

  4. 4.

    H.A. Hegab, M.H. Gadallah, and A.K. Esawi, Modeling and Optimization of Electrical Discharge Machining (EDM) Using Statistical Design, Manuf. Rev., 2015, https://doi.org/10.1051/mfreview/2015023

    Article  Google Scholar 

  5. 5.

    S. Bhattacharya, G.J. Abraham, A. Mishra, V. Kain, and G.K. Dey, Corrosion Behavior of Wire Electrical Discharge Machined Surfaces of P91 Steel, J. Mater. Eng. Perform., 2018, 27(9), p 4561–4570. https://doi.org/10.1007/s11665-018-3558-5

    CAS  Article  Google Scholar 

  6. 6.

    A.M. Escobar, D.F. de Lange, and H.I. Medellín Castillo, Simplified Plasma Channel Formation Model for the Electrical Discharge Machining Process, Int. J. Adv. Manuf. Technol., 2020, 106(1-2), p 143–153

    Article  Google Scholar 

  7. 7.

    A. Razeghiyadaki, C. Molardi, D. Talamona, and A. Perveen, Modeling of Material Removal Rate and Surface Roughness Generated during Electro-Discharge Machining, Machines, 2019, 7(2), p 1–17

    Article  Google Scholar 

  8. 8.

    K. Jangra, S. Grover, and A. Aggarwal, Optimization of Multi Machining Characteristics in WEDM of WC-5.3%Co Composite Using Integrated Approach of Taguchi, GRA and Entropy Method, Front. Mech. Eng., 2012, 7(3), p 288–299

    Article  Google Scholar 

  9. 9.

    V. Kumar, V. Kumar, and K.K. Jangra, An Experimental Analysis and Optimization of Machining Rate and Surface Characteristics in WEDM of Monel-400 Using RSM and Desirability Approach, J. Ind. Eng. Int., 2015, 11(3), p 297–307. https://doi.org/10.1007/s40092-015-0103-0

    Article  Google Scholar 

  10. 10.

    K. Jangra and S. Grover, Modelling and Experimental Investigation of Process Parameters in WEDM of WC-5.3% Co Using Response Surface Methodology, Mech. Sci., 2012, 3(2), p 63–72

    Article  Google Scholar 

  11. 11.

    B. Denkena, A. Lucas, F. Thorey, H. Waizy, N. Angrisani, and A. Meyer-Lindenberg, Biocompatible Magnesium Alloys as Degradable Implant Materials—Machining Induced Surface and Subsurface Properties and Implant Performance, Spec. Issues Mag. Alloys, 2011, https://doi.org/10.5772/22793

    Article  Google Scholar 

  12. 12.

    A. Vadiraj, M. Kamaraj, U. Kamachi Mudali, and A.K. Nath, Effect of Surface Modified Layers on Fretting Fatigue Damage of Biomedical Titanium Alloys, Mater. Sci. Technol., 2006, 22(9), p 1119–1125

    CAS  Article  Google Scholar 

  13. 13.

    Q. Chen and G.A. Thouas, Metallic Implant Biomaterials, Mater. Sci. Eng. R Rep, 2015, 87, p 1–57. https://doi.org/10.1016/j.mser.2014.10.001

    Article  Google Scholar 

  14. 14.

    G. Eddy Jai Poinern, S. Brundavanam, and D. Fawcett, Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Biodegradable Orthopaedic Implant, Am. J. Biomed. Eng., 2013, 2(6), p 218–240

    Article  Google Scholar 

  15. 15.

    Y.F. Zheng, X.N. Gu, and F. Witte, Biodegradable Metals, Mater. Sci. Eng. R Rep., 2014, 77, p 1–34

    Article  Google Scholar 

  16. 16.

    R. Zeng, W. Dietzel, F. Witte, N. Hort, and C. Blawert, Progress and Challenge for Magnesium Alloys as Biomaterials, Adv. Eng. Mater., 2008, 10(8), p 3–14

    Article  Google Scholar 

  17. 17.

    D.H. Cho, B.W. Lee, J.Y. Park, K.M. Cho, and I.M. Park, Effect of Mn Addition on Corrosion Properties of Biodegradable Mg-4Zn-0.5Ca-XMn Alloys, J. Alloys Compd., 2017, 695, p 1166–1174. https://doi.org/10.1016/j.jallcom.2016.10.244

    CAS  Article  Google Scholar 

  18. 18.

    J. Kubásek, D. Vojtěch, J. Lipov, and T. Ruml, Structure, Mechanical Properties, Corrosion Behavior and Cytotoxicity of Biodegradable Mg-X (X = Sn, Ga, In) Alloys, Mater. Sci. Eng. C, 2013, 33(4), p 2421–2432

    Article  Google Scholar 

  19. 19.

    Z. Gui, Z. Kang, and Y. Li, Corrosion Mechanism of the As-Cast and as-Extruded Biodegradable Mg-3.0Gd-2.7Zn-0.4Zr-0.1Mn Alloys, Mater. Sci. Eng. C, 2019, 96, p 831–840. https://doi.org/10.1016/j.msec.2018.11.037

    CAS  Article  Google Scholar 

  20. 20.

    L. Elkaiam, O. Hakimi, J. Goldman, and E. Aghion, The Effect of Nd on Mechanical Properties and Corrosion Performance of Biodegradable Mg-5%Zn Alloy, Metals (Basel), 2018, 8(6), p 438

    Article  Google Scholar 

  21. 21.

    F. Bär, L. Berger, L. Jauer, G. Kurtuldu, R. Schäublin, J.H. Schleifenbaum, and J.F. Löffler, Laser Additive Manufacturing of Biodegradable Magnesium Alloy WE43: A Detailed Microstructure Analysis, Acta Biomater., 2019, 98, p 36–49

    Article  Google Scholar 

  22. 22.

    L. Choudhary and R.K. Singh Raman, Mechanical Integrity of Magnesium Alloys in a Physiological Environment: Slow Strain Rate Testing Based Study, Eng. Fract. Mech., 2013, 103, p 94–102. https://doi.org/10.1016/j.engfracmech.2012.09.016

    Article  Google Scholar 

  23. 23.

    K. Kumar, R.S. Gill, and U. Batra, Challenges and Opportunities for Biodegradable Magnesium Alloy Implants, Mater. Technol., 2017, 7857, p 1–20. https://doi.org/10.1080/10667857.2017.1377973

    CAS  Article  Google Scholar 

  24. 24.

    D. Lu, Y. Huang, Q. Jiang, M. Zheng, J. Duan, and B. Hou, An Approach to Fabricating Protective Coatings on a Magnesium Alloy Utilising Alumina, Surf. Coat. Technol., 2019, 367, p 336–340. https://doi.org/10.1016/j.surfcoat.2019.04.016

    CAS  Article  Google Scholar 

  25. 25.

    X. Cui, X. Lin, C. Liu, R. Yang, X. Zheng, and M. Gong, Fabrication and Corrosion Resistance of a Hydrophobic Micro-Arc Oxidation Coating on AZ31 Mg Alloy, Corros. Sci., 2015, 90, p 402–412. https://doi.org/10.1016/j.corsci.2014.10.041

    CAS  Article  Google Scholar 

  26. 26.

    G. Peng, Q. Qiao, L. Jin, B. Zhang, Y. Wang, K. Huang, Q. Yao, D. Zhang, Z. Zhang, T. Fang, J. Wu, and Y. He, A Novel CeO2/MgAl2O4 Composite Coating for the Protection of AZ31 Magnesium Alloys, J. Mater. Sci., 2020, 55(4), p 1727–1737. https://doi.org/10.1007/s10853-019-03992-w

    CAS  Article  Google Scholar 

  27. 27.

    M.B. Kannan and R.K.S. Raman, In Vitro Degradation and Mechanical Integrity of Calcium-Containing Magnesium Alloys in Modified-Simulated Body Fluid, Biomaterials, 2008, 29(15), p 2306–2314

    CAS  Article  Google Scholar 

  28. 28.

    N. Sharma, G. Singh, M. Gupta, H. Hegab, and M. Mia, Investigations of Surface Integrity, Bio-Activity and Performance Characteristics during Wire-Electrical Discharge Machining of Ti-6Al-7Nb Biomedical Alloy, Mater. Res. Express, 2019, 6(9), p 096568

    CAS  Article  Google Scholar 

  29. 29.

    J. Xu, K. Xia, Z. Lian, L. Zhang, H. Yu, Z. Yu, Z. Weng, and Z. Wang, Surface Properties on Magnesium Alloy and Corrosion Behaviour Based High-Speed Wire Electrical Discharge Machine Power Tubes, Micro Nano Lett., 2016, 11(1), p 15–19

    Article  Google Scholar 

  30. 30.

    S. Sun, S. Di, P. Lü, D. Wei, J. Yu, and Y. Guo, Microstructure and Properties of Metamorphic Layer Formed on Mg-RE Alloy in Micro-EDM Process, Jinshu Xuebao/Acta Metall. Sin., 2013, 49(2), p 251–256

    CAS  Article  Google Scholar 

  31. 31.

    F. Klocke, M. Schwade, A. Klink, D. Veselovac, and A. Kopp, Influence of Electro Discharge Machining of Biodegradable Magnesium on the Biocompatibility, Procedia CIRP, 2013, 5, p 88–93. https://doi.org/10.1016/j.procir.2013.01.018

    Article  Google Scholar 

  32. 32.

    B. Yoo, K.R. Shin, D.Y. Hwang, D.H. Lee, and D.H. Shin, Effect of Surface Roughness on Leakage Current and Corrosion Resistance of Oxide Layer on AZ91 Mg Alloy Prepared by Plasma Electrolytic Oxidation, Appl. Surf. Sci., 2010, 256(22), p 6667–6672. https://doi.org/10.1016/j.apsusc.2010.04.067

    CAS  Article  Google Scholar 

  33. 33.

    R. Walter, M. Bobby Kannan, Y. He, and A. Sandham, Effect of Surface Roughness on the in Vitro Degradation Behaviour of a Biodegradable Magnesium-Based Alloy, Appl. Surf. Sci., 2013, 279, p 343–348

    CAS  Article  Google Scholar 

  34. 34.

    G.L. Song and Z.Q. Xu, The Surface, Microstructure and Corrosion of Magnesium Alloy AZ31 Sheet, Electrochim. Acta, 2010, 55(13), p 4148–4161. https://doi.org/10.1016/j.electacta.2010.02.068

    CAS  Article  Google Scholar 

  35. 35.

    R. Walter and M.B. Kannan, Influence of Surface Roughness on the Corrosion Behaviour of Magnesium Alloy, Mater. Des., 2011, 32(4), p 2350–2354. https://doi.org/10.1016/j.matdes.2010.12.016

    CAS  Article  Google Scholar 

  36. 36.

    T.M. Yue, L.J. Yan, and H.C. Man, The Effect of Machined Surface Condition on the Corrosion Behavior of Magnesium ZM51/SiC Composite, Mater. Manuf. Process., 2004, 19(2), p 123–138

    CAS  Article  Google Scholar 

  37. 37.

    S. Das, S. Paul, and B. Doloi, Application of CFD and Vapor Bubble Dynamics for an Efficient Electro-Thermal Simulation of EDM: An Integrated Approach, Int. J. Adv. Manuf. Technol., 2019, 102(5-8), p 1787–1800

    Article  Google Scholar 

  38. 38.

    N. Sharma, T. Raj, and K.K. Jangra, Parameter Optimization and Experimental Study on Wire Electrical Discharge Machining of Porous Ni40Ti60 Alloy, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2017, 231(6), p 956–970

    CAS  Article  Google Scholar 

  39. 39.

    R.F. Gunst, R.H. Myers, and D.C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Technometrics, 1996, 38, p 284–286

    Article  Google Scholar 

  40. 40.

    J. Tapadar, R. Thakur, P. Chetia, S.K. Tamang, and S. Samanta, Modeling of WEDM Parameters While Machining Mg-SiC Metal Matrix Composite, Int. J. Technol., 2017, 8(5), p 878–886

    Article  Google Scholar 

  41. 41.

    V. Kumar, K.K. Jangra, V. Kumar, and N. Sharma, WEDM of Nickel Based Aerospace Alloy: Optimization of Process Parameters and Modelling, Int. J. Interact. Des. Manuf., 2017, 11(4), p 917–929

    Article  Google Scholar 

  42. 42.

    S. Öztürk and M.F. Kahraman, Modeling and Optimization of Machining Parameters during Grinding of Flat Glass Using Response Surface Methodology and Probabilistic Uncertainty Analysis Based on Monte Carlo Simulation, Meas. J. Int. Meas. Confed., 2019, 145, p 274–291

    Article  Google Scholar 

  43. 43.

    S.S. Kumar, F. Erdemir, T. Varol, S.T. Kumaran, M. Uthayakumar, and A. Canakci, Investigation of WEDM Process Parameters of Al-SiC-B4C Composites Using Response Surface Methodology, Int. J. Light. Mater. Manuf., 2020, 3(2), p 127–135. https://doi.org/10.1016/j.ijlmm.2019.09.003

    Article  Google Scholar 

  44. 44.

    A. Mehrvar, A. Bast, and A. Jamali, Investigation and Analysis of Electrochemical Machining of 321-Stainless Steel Based on Response Surface Methodology, Int. Sci. J. Mach. Technol. Mater., 2019, 301(7), p 298–301

    Google Scholar 

  45. 45.

    D.D. DiBitonto, P.T. Eubank, M.R. Patel, and M.A. Barrufet, Theoretical Models of the Electrical Discharge Machining Process. I. A Simple Cathode Erosion Model, J. Appl. Phys., 1989, 66(9), p 4095–4103

    CAS  Article  Google Scholar 

  46. 46.

    A. Giridharan and G.L. Samuel, Modeling and Analysis of Crater Formation during Wire Electrical Discharge Turning (WEDT) Process, Int. J. Adv. Manuf. Technol., 2015, 77(5-8), p 1229–1247

    Article  Google Scholar 

  47. 47.

    S.H. Yeo, W. Kurnia, and P.C. Tan, Critical Assessment and Numerical Comparison of Electro-Thermal Models in EDM, J. Mater. Process. Technol., 2008, 203(1-3), p 241–251

    CAS  Article  Google Scholar 

  48. 48.

    H. Bisaria and P. Shandilya, Experimental Investigation on Wire Electric Discharge Machining (WEDM) of Nimonic C-263 Superalloy, Mater. Manuf. Process., 2019, 34(1), p 83–92. https://doi.org/10.1080/10426914.2018.1532589

    CAS  Article  Google Scholar 

  49. 49.

    G. Derringer and R. Suich, Simultaneous Optimization of Several Response Variables, J. Qual. Technol., 1980, 12(4), p 214–219

    Article  Google Scholar 

Download references

Acknowledgments

This work is funded under the research grant (File No. EMR/2016/001581) sponsored by the SERB, DST, India.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kamal Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Ton in (machine unit) Ton in µ-s Toff in (machine unit) Toff in µ-s Toff in (machine unit) Toff in µ-s
100 0 0 2 32 10
101 0.1 1 2.25 33 10.5
102 0.15 2 2.5 34 11
103 0.2 3 2.75 35 11.5
104 0.25 4 3 36 12
105 0.3 5 3.25 37 12.5
106 0.35 6 3.5 38 13
107 0.4 7 3.75 39 13.5
108 0.45 8 4 40 14
109 0.5 9 4.25 41 14.5
110 0.55 10 4.5 42 15
111 0.6 11 4.75 43 16
112 0.65 12 5 44 17
113 0.7 13 5.25 45 18
114 0.75 14 5.5 46 19
115 0.8 15 5.75 47 20
116 0.85 16 6 48 22
117 0.9 17 6.25 49 24
118 0.95 18 6.5 50 26
119 1 19 6.75 51 28
120 1.05 20 7 52 30
121 1.1 21 7.25 53 32
122 1.15 22 7.5 54 34
123 1.2 23 7.75 55 36
124 1.25 24 8 56 38
125 1.3 25 8.25 57 40
126 1.35 26 8.5 58 42
127 1.4 27 8.75 59 44
128 1.45 28 9 60 46
129 1.5 29 9.25 61 48
130 1.55 30 9.5 62 50
131 1.65 31 9.75 63 52

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahuja, N., Batra, U. & Kumar, K. Experimental Investigation and Optimization of Wire Electrical Discharge Machining for Surface Characteristics and Corrosion Rate of Biodegradable Mg Alloy. J. of Materi Eng and Perform 29, 4117–4129 (2020). https://doi.org/10.1007/s11665-020-04905-8

Download citation

Keywords

  • ZM21 Mg alloy
  • corrosion rate
  • design of experiment
  • desirability function
  • response surface method (RSM)
  • surface micro-cracks
  • surface roughness
  • WEDM