Cavitation Erosion and Corrosion Behavior of NiTi Cladding with Cu and Nb Interlayers

Abstract

Cavitation erosion resistance of NiTi claddings by tungsten inert gas with/without Cu, Nb and Cu + Nb interlayers was investigated. The NiTi-TIG and NiTi-Nb-TIG claddings cannot resist the cavitation erosion due to the presence of cracks and brittle phase Fe2Ti. The employment of Cu and Cu + Nb interlayers can inhibit the welding cracks and brittle phase Fe2Ti. The ranking according to the cavitation erosion resistance is NiTi plate > NiTi-Cu-TIG cladding ≈ NiTi-Cu-Nb-TIG cladding > stainless steel. The superior cavitation erosion resistance of NiTi-Cu-TIG and NiTi-Cu-Nb-TIG claddings results from high hardness, superelasticity, no cracks and no brittle Fe2Ti phases. However, the corrosion resistance of NiTi claddings with Cu and Cu + Nb interlayers is slightly reduced due to the existence of the second phases and pores, compared with the NiTi plate.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    G. Rondelli, B. Vicentini, and A. Gigada, The Corrosion Behavior of Nickel Titanium Shape Memory Alloys, Corros. Sci., 1990, 30, p 805–812

    CAS  Google Scholar 

  2. 2.

    J.P. Oliveira, R.M. Miranda, and F.M. Braz Fernandes, Welding and Joining of NiTi Shape Memory Alloys: A Review, Prog. Mater. Sci., 2017, 88, p 412–466

    CAS  Google Scholar 

  3. 3.

    T. Deepan Bharathi Kannan, T. Ramesh, and P. Sathiya, A Review of Similar and Dissimilar Micro-joining of Nitinol, Jom, 2016, 68, p 1227–1245

    CAS  Google Scholar 

  4. 4.

    C.W. Chan, H.C. Man, and F.T. Cheng, Fatigue Behavior of Laser-Welded NiTi Wires in Small-Strain Cyclic Bending, Mater. Sci. Eng. A, 2013, 559, p 407–415

    CAS  Google Scholar 

  5. 5.

    R.H. Richman, Cavitation Erosion of Two NiTi Alloys, Wear, 1992, 157, p 401–407

    CAS  Google Scholar 

  6. 6.

    W. Liu, Y.G. Zheng, C.S. Liu, and Z.M. Yao, Cavitation Erosion Characteristics of a NiTi Alloy, Metall, Mater. Trans. A, 2004, 35A, p 356–362

    CAS  Google Scholar 

  7. 7.

    J.S. Carlton, Marine Propellers and Propulsion, 1st ed., Butterworth Heinemann, Oxford, 1994, p 199

    Google Scholar 

  8. 8.

    M. Bitzer, N. Rauhut, G. Mauer, M. Bram, R. Vassen, and H.P. Buchkremer, Cavitation-Resistant NiTi Coatings Produced by Low-Pressure Plasma Spraying (LPPS), Wear, 2015, 328, p 369–377

    Google Scholar 

  9. 9.

    J.M. Guilemany, N. Cinca, S. Dosta, and A.V. Benedetti, Corrosion Behaviour of Thermal Sprayed Nitinol Coatings, Corros. Sci., 2009, 51, p 171–180

    CAS  Google Scholar 

  10. 10.

    Z.P. Shi, J.Q. Wang, Z.B. Wang, Y.X. Qiao, T.Y. Xiong, and Y.G. Zheng, Cavitation Erosion and Jet Impingement Erosion Behavior of the NiTi Coating Produced by Air Plasma Spraying, Coatings, 2018, 8, p 346

    Google Scholar 

  11. 11.

    M.M. Verdian, K. Raeissi, and M. Salehi, Corrosion Performance of HVOF and APS Thermally Sprayed NiTi Intermetallic Coatings in 3.5% NaCl Solution, Corros. Sci., 2010, 52, p 1052–1059

    CAS  Google Scholar 

  12. 12.

    K.Y. Chiu, F.T. Cheng, and H.C. Man, Cavitation Erosion Resistance of AISI, 316L Stainless Steel Laser Surface-Modified with NiTi, Mater. Sci. Eng. A, 2005, 392, p 348–358

    Google Scholar 

  13. 13.

    H. Hitoshi, I. Takashi, S. Hirofumi, and M. Akira, Cavitation Erosion Mechanism of NiTi Coatings Made by Laser Plasma Hybrid Spraying, Wear, 1999, 231, p 272–278

    Google Scholar 

  14. 14.

    L.M. Yang, A.K. Tieu, D.P. Dunne, S.W. Huang, H.J. Li, and D. Wexler, Cavitation Erosion Resistance of NiTi Thin Films Produced by Filtered Arc Deposition, Wear, 2009, 267, p 233–243

    CAS  Google Scholar 

  15. 15.

    M. Kabla, H. Seiner, M. Musilova, M. Landa, and D. Shilo, The Relationships Between Sputter Deposition Conditions, Grain Size, and Phase Transformation Temperatures in NiTi Thin Films, Acta Mater., 2014, 70, p 79–91

    CAS  Google Scholar 

  16. 16.

    C.J. Huang, X.C. Yan, W.Y. Li, W.B. Wang, C. Verdy, and M.P. Planche, Post-spray Modification of Cold-Sprayed Ni-Ti Coatings by High-Temperature Vacuum Annealing and Friction Stir Processing, Appl. Surf. Sci., 2018, 451, p 56–66

    CAS  Google Scholar 

  17. 17.

    Z.P. Shi, Z.B. Wang, J.Q. Wang, Y.X. Qiao, H.N. Chen, T.Y. Xiong, and Y.G. Zheng, Effect of Ni Interlayer on Cavitation Erosion Resistance of NiTi Cladding by Tungsten Inert Gas (TIG) Surfacing Process, Acta Metall. Sin. (Engl. Lett.), 2020, 33, p 415–424

    CAS  Google Scholar 

  18. 18.

    F.T. Cheng, K.H. Lo, and H.C. Man, NiTi Cladding on Stainless Steel by TIG Surfacing Process Part I. Cavitation Erosion Behavior, Surf. Coat. Technol., 2003, 172, p 308–315

    CAS  Google Scholar 

  19. 19.

    A. Ikai, K. Kimura, and H. Tobushi, TIG Welding and Shape Memory Effect of TiNi Shape Memory Alloy, J. Intell. Mater. Syst. Struct., 1996, 7, p 646–655

    CAS  Google Scholar 

  20. 20.

    G. Fox, N. Johnson, N.M. Wereley, R. Hahnlen, and M.J. Dapino, Fusion Welding of Nickel–Titanium and 304 Stainless Steel Tubes: Part II: Tungsten Inert Gas Welding, J. Intell. Mater. Syst. Struct., 2012, 24, p 962–972

    Google Scholar 

  21. 21.

    M. Mehrpouya, A. Gisario, and M. Elahinia, Laser Welding of NiTi Shape Memory Alloy: A Review, J. Manuf. Process., 2018, 31, p 162–186

    Google Scholar 

  22. 22.

    W. Zhang, S. Ao, J.P. Oliveira, Z. Zeng, Y.F. Huang, and Z. Luo, Microstructural Characterization and Mechanical Behavior of NiTi Shape Memory Alloys Ultrasonic Joints Using Cu Interlayer, Mater. (Basel), 2018, 11, p 1830

    Google Scholar 

  23. 23.

    J.P. Oliveira, Z. Zeng, C. Andrei, F.M. Braz Fernandes, R.M. Miranda, and A.J. Ramirez, Dissimilar Laser Welding of Superelastic NiTi and CuAlMn Shape Memory Alloys, Mater. Des., 2017, 128, p 166–175

    CAS  Google Scholar 

  24. 24.

    A. Shojaei Zoeram and S.A.A. Akbari Mousavi, Effect of Interlayer Thickness on Microstructure and Mechanical Properties of as Welded Ti6Al4V/Cu/NiTi Joints, Mater. Lett., 2014, 133, p 5–8

    CAS  Google Scholar 

  25. 25.

    H.M. Li, D.Q. Sun, X.Y. Gu, P. Dong, and Z.P. Lv, Effects of the Thickness of Cu Filler Metal on the Microstructure and Properties of Laser-Welded TiNi Alloy and Stainless Steel Joint, Mater. Des., 2013, 50, p 342–350

    CAS  Google Scholar 

  26. 26.

    M. Moorehead, Z.F. Yu, L. Borrel, J. Hu, Z.H. Cai, and A. Couet, Comprehensive Investigation of the Role of Nb on the Oxidation Kinetics of Zr-Nb Alloys, Corros. Sci., 2019, 155, p 173–181

    CAS  Google Scholar 

  27. 27.

    K. Zhang, T.B. Zhang, X.H. Zhang, and L. Song, Corrosion Resistance and Interfacial Morphologies of a High Nb-Containing TiAl Alloy with and Without Thermal Barrier Coatings in Molten Salts, Corros. Sci., 2019, 156, p 139–146

    CAS  Google Scholar 

  28. 28.

    B. Fu, K. Feng, and Z.G. Li, Study on the Effect of Cu Addition on the Microstructure and Properties of NiTi Alloy Fabricated by Laser Cladding, Mater. Lett., 2018, 220, p 148–151

    Google Scholar 

  29. 29.

    Z. Zeng, B. Panton, J.P. Oliveira, A. Han, and Y.N. Zhou, Dissimilar Laser Welding of NiTi Shape Memory Alloy and Copper, Smart Mater. Struct., 2015, 24, p 125036

    Google Scholar 

  30. 30.

    X.K. Zhao, L. Lan, H.B. Sun, J.H. Huang, and H. Zhang, Mechanical Properties of Additive Laser-Welded NiTi Alloy, Mater. Lett., 2010, 64, p 628–631

    CAS  Google Scholar 

  31. 31.

    J.P. Oliveira, B. Panton, Z. Zeng, C.M. Andrei, Y. Zhou, and R.M. Miranda, Laser Joining of NiTi to Ti6Al4V Using a Niobium Interlayer, Acta Mater., 2016, 105, p 9–15

    CAS  Google Scholar 

  32. 32.

    S. Kundu and S. Chatterjee, Evolution of Interface Microstructure and Mechanical Properties of Titanium/304 Stainless Steel Diffusion Bonded Joint Using Nb Interlayer, ISIJ Int., 2010, 50, p 1460–1465

    CAS  Google Scholar 

  33. 33.

    D.S. Grummon, J.A. Shaw, and J. Foltz, Fabrication of Cellular Shape Memory Alloy Materials by Reactive Eutectic Brazing Using Niobium, Mater. Sci. Eng. A, 2006, 438–440, p 1113–1118

    Google Scholar 

  34. 34.

    ASTM G32-10 Standard Test Method for Cavitation Erosion Using Vibratory Apparatus (ASTM International, West Conshohocken, PA, USA, 2010)

  35. 35.

    Y.X. Qiao, Z.H. Tian, X. Cai, J. Chen, Y.X. Wang, and Q.N. Song, Cavitation Erosion Behaviors of a Nickel-Free High-Nitrogen Stainless Steel, Tribol. Lett., 2019, 67, p 1

    CAS  Google Scholar 

  36. 36.

    C.E. Correa, G.L. García, A.N. García, W. Bejarano, A.A. Guzmán, and A. Toro, Wear Mechanisms of Epoxy-Based Composite Coatings Submitted to Cavitation, Wear, 2011, 271, p 2274–2279

    CAS  Google Scholar 

  37. 37.

    T. Owa, T. Shinoda, and Y. Kato, NiTi Coatings Produced by the Transferred Plasma Arc Welding Process and Their Wear Characteristics, Weld. Int., 2002, 16, p 276–283

    Google Scholar 

  38. 38.

    C. Velmurugan and V. Senthilkumar, The Effect of Cu Addition on the Morphological, Structural and Mechanical Characteristics of Nanocrystalline NiTi Shape Memory Alloys, J. Alloys Compd., 2018, 767, p 944–954

    CAS  Google Scholar 

  39. 39.

    H.J. Yi, Y.J. Lee, and K.O. Lee, TIG Dressing Effects on Weld Pores and Pore Cracking of Titanium Weldments, Metals, 2016, 6, p 243

    Google Scholar 

  40. 40.

    J. Pouquet, R.M. Miranda, L. Quintino, and S. Williams, Dissimilar Laser Welding of NiTi to Stainless Steel, Int. J. Adv. Manuf. Technol., 2011, 61, p 205–212

    Google Scholar 

  41. 41.

    J.R. Weng, J.T. Chang, K.C. Chen, and J.L. He, Solid/Liquid Erosion Behavior of Gas Tungsten Arc Welded TiNi Overlay, Wear, 2003, 255, p 219–224

    CAS  Google Scholar 

  42. 42.

    Y.X. Qiao, J. Chen, H.L. Zhou, Y.X. Wang, Q.N. Song, and H.B. Li, Effect of Solution Treatment on Cavitation Erosion Behavior of High-Nitrogen Austenitic Stainless Steel, Wear, 2019, 424–425, p 70–77

    Google Scholar 

  43. 43.

    S.K. Wu, H.C. Lin, and C.H. Yeh, A Comparison of the Cavitation Erosion Resistance of TiNi Alloys, SUS304 Stainless Steel and Ni-Based Self-fluxing Alloy, Wear, 2000, 244, p 85–93

    CAS  Google Scholar 

  44. 44.

    F.T. Cheng, K.H. Lo, and H.C. Man, NiTi Cladding on Stainless Steel by TIG Surfacing Process Part II. Corrosion Behavior, Surf. Coat. Technol., 2003, 172, p 316–321

    CAS  Google Scholar 

  45. 45.

    Z.B. Wang, H.X. Hu, Y.G. Zheng, W. Ke, and Y.X. Qiao, Comparison of the Corrosion Behavior of Pure Titanium and its Alloys in Fluoride-Containing Sulfuric Acid, Corros. Sci., 2016, 103, p 50–65

    CAS  Google Scholar 

  46. 46.

    M.N. Mokgalaka, A.P.I. Popoola, and S.L. Pityana, In Situ Laser Deposition of NiTi Intermetallics for Corrosion Improvement of Ti–6Al–4V Alloy, Trans. Nonferrous Met. Soc. China, 2015, 25, p 3315–3322

    CAS  Google Scholar 

  47. 47.

    Y.X. Qiao, D.K. Xu, S. Wang, Y.J. Ma, J. Chen, Y.X. Wang, and H.N. Zhou, Corrosion and Tensile Behaviors of Ti-4Al-2 V-1Mo-1Fe and Ti-6Al-4V Titanium Alloys, Metals, 2019, 9, p 1213

    CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (Grant Numbers: 51801218). The authors would like to acknowledge Huaining Chen, Hang Liang, and Zhaoxuan Zhang for preparing NiTi cladding by TIG surfacing process.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Z. B. Wang or Y. X. Qiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, Z.P., Wang, Z.B., Chen, F.G. et al. Cavitation Erosion and Corrosion Behavior of NiTi Cladding with Cu and Nb Interlayers. J. of Materi Eng and Perform (2020). https://doi.org/10.1007/s11665-020-04901-y

Download citation

Keywords

  • NiTi
  • cavitation
  • corrosion
  • interlayer
  • tungsten inert gas surfacing process