Investigation of Microstructure, Mechanical Properties, and Numerical Modeling of Ti6Al4V Joints Produced by Friction Stir Spot Welding

Abstract

In this work, lap-joined titanium alloy sheets have been successfully spot welded using friction stir spot welding (FSSW). Fully consolidated spot welds of thin Ti6Al4V sheets were obtained with a convex scrolled polycrystalline cubic boron nitride probe. The influence of processing parameters on FSSW was evaluated through a finite element analysis (FEA). Numerical results showed that von Mises stress and strain distributions were non-symmetric in the stir zone, whereas higher temperatures were observed in the region next to the tool pin. The welding microstructures showed different effects due to temperature gradients and material flow. The tool configuration played a significant role when determining the spot weld quality, since it directly influences the flow behavior of FSSW. It was observed that, in the stir zone, the microstructure suffered a transformation from α to β. The effect of welding parameters and the development of a FEA for the friction stir spot process were explored in the current investigation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    C. Cui, B.M. Hu, L. Zhao, and S. Liu, Titanium Alloy Production Technology, Market Prospects and Industry Development, Mater. Des., 2011, https://doi.org/10.1016/j.matdes.2010.09.011

    Article  Google Scholar 

  2. 2.

    X. Zhan, Y. Liu, J. Liu, Y. Meng, Y. Wei, J. Yang, and X. Liu, Comparative Study on Experimental and Numerical Investigations of Laser Beam and Electron Beam Welded Joints for Ti6Al4V Alloy, J. Laser Appl., 2017, https://doi.org/10.2351/1.4975824

    Article  Google Scholar 

  3. 3.

    C. Qi, X. Zhan, Q. Gao, L. Liu, Y. Song, and Y. Li, The Influence of the Pre-placed Powder Layers on the Morphology, Microscopic Characteristics and Microhardness of Ti-6Al-4V/WC MMC Coatings during Laser Cladding, Opt. Laser Technol., 2019, https://doi.org/10.1016/j.optlastec.2019.105572

    Article  Google Scholar 

  4. 4.

    X. Zhan, H. Bu, Q. Gao, T. Yan, and W. Ling, Temperature Field Simulation and Grain Morphology on Laser Welding-Brazing Between Ti-6Al-4V and 1050 Aluminum Alloy, Mater. Res. Express., 2019, https://doi.org/10.1088/2053-1591/ab061a

    Article  Google Scholar 

  5. 5.

    P. Chai, W. Hu, S. Ji, X. Ai, Z. Lv, and Q. Song, Refill Friction Stir Spot Welding Dissimilar Al/Mg Alloys, J. Mater. Eng. Perform., 2019, 28, p 6174–6181. https://doi.org/10.1007/s11665-019-04359-7

    CAS  Article  Google Scholar 

  6. 6.

    D. Trimble, G.E. O’Donnell, and J. Monaghan, Characterisation of Tool Shape and Rotational Speed for Increased Speed during Friction Stir Welding of AA2024-T3, J. Manuf. Process., 2015, https://doi.org/10.1016/j.jmapro.2014.08.007

    Article  Google Scholar 

  7. 7.

    A. Toumpis, A. Galloway, S. Cater, and N. McPherson, Development of a Process Envelope for Friction Stir Welding of DH36 Steel—A Step Change, Mater. Des., 2014, https://doi.org/10.1016/j.matdes.2014.04.066

    Article  Google Scholar 

  8. 8.

    Y. Zhang, Y.S. Sato, H. Kokawa, S.H.C. Park, and S. Hirano, Microstructural Characteristics and Mechanical Properties of Ti-6Al-4V Friction Stir Welds, Mater. Sci. Eng., A, 2008, https://doi.org/10.1016/j.msea.2007.08.051

    Article  Google Scholar 

  9. 9.

    H. Papahn, P. Bahemmat, M. Haghpanahi, and I.P. Aminaie, Effect of Friction Stir Welding Tool on Temperature, Applied Forces and Weld Quality, IET Sci. Meas. Technol., 2015, https://doi.org/10.1049/iet-smt.2014.0150

    Article  Google Scholar 

  10. 10.

    H. Fujii, Y. Sun, H. Kato, and K. Nakata, Investigation of Welding Parameter Dependent Microstructure and Mechanical Properties in Friction Stir Welded Pure Ti Joints, Mater. Sci. Eng., A, 2010, https://doi.org/10.1016/j.msea.2010.02.023

    Article  Google Scholar 

  11. 11.

    S. Mironov, Y. Zhang, Y.S. Sato, and H. Kokawa, Development of Grain Structure in β-Phase Field during Friction Stir Welding of Ti-6Al-4V Alloy, Scr. Mater., 2008, https://doi.org/10.1016/j.scriptamat.2008.02.014

    Article  Google Scholar 

  12. 12.

    K. Kitamura, H. Fujii, Y. Iwata, Y.S. Sun, and Y. Morisada, Flexible Control of the Microstructure and Mechanical Properties of Friction Stir Welded Ti-6Al-4V Joints, Mater. Des., 2013, https://doi.org/10.1016/j.matdes.2012.10.051

    Article  Google Scholar 

  13. 13.

    W.S. Lee and C.F. Lin, High-Temperature Deformation Behaviour of Ti6A14V Alloy Evaluated by High Strain-Rate Compression Tests, J. Mater. Process. Technol., 1998, https://doi.org/10.1016/S0924-0136(97)00302-6

    Article  Google Scholar 

  14. 14.

    H.J. Liu, L. Zhou, and Q.W. Liu, Microstructural Characteristics and Mechanical Properties of Friction Stir Welded Joints of Ti-6Al-4V Titanium Alloy, Mater. Des., 2010, https://doi.org/10.1016/j.matdes.2009.08.025

    Article  Google Scholar 

  15. 15.

    L. Zhou, H.J. Liu, and Q.W. Liu, Effect of Rotation Speed on Microstructure and Mechanical Properties of Ti-6Al-4V Friction Stir Welded Joints, Mater. Des., 2010, https://doi.org/10.1016/j.matdes.2009.12.014

    Article  Google Scholar 

  16. 16.

    J. Wang, J. Su, R.S. Mishra, R. Xu, and J.A. Baumann, Tool Wear Mechanisms in Friction Stir Welding of Ti-6Al-4V Alloy, Wear, 2014, https://doi.org/10.1016/j.wear.2014.09.010

    Article  Google Scholar 

  17. 17.

    S. Yoon, R. Ueji, and H. Fujii, Effect of Rotation Rate on Microstructure and Texture Evolution during Friction Stir Welding of Ti-6Al-4V Plates, Mater. Charact., 2015, https://doi.org/10.1016/j.matchar.2015.06.025

    Article  Google Scholar 

  18. 18.

    H. Jamshidi Aval, Microstructure and Residual Stress Distributions in Friction Stir Welding of Dissimilar Aluminium Alloys, Mater. Des., 2015, https://doi.org/10.1016/j.matdes.2015.08.050

    Article  Google Scholar 

  19. 19.

    X.W. Yang, T. Fu, and W.Y. Li, Friction Stir Spot Welding: A Review on Joint Macro- and Microstructure, Property, and Process Modelling, Adv. Mater. Sci. Eng., 2014, https://doi.org/10.1155/2014/697170

    Article  Google Scholar 

  20. 20.

    X. Song, L. Ke, L. Xing, F. Liu, and C. Huang, Effect of Plunge Speeds on Hook Geometries and Mechanical Properties in Friction Stir Spot Welding of A6061-T6 Sheets, Int. J. Adv. Manuf. Technol., 2014, https://doi.org/10.1007/s00170-014-5632-y

    Article  Google Scholar 

  21. 21.

    Y. Bozkurt, S. Salman, and G. Çam, Effect of Welding Parameters on Lap Shear Tensile Properties of Dissimilar Friction Stir Spot Welded aa 5754-h22/2024-t3 Joints, Sci. Technol. Weld. Join., 2013, https://doi.org/10.1179/1362171813Y.0000000111

    Article  Google Scholar 

  22. 22.

    F.A. Garcia-Castillo, F.J. García-Vázquez, F.A. Reyes-Valdés, P.C. Zambrano-Robledo, G.M. Hernández-Muñoz, and E.R. Rodríguez-Ramos, Microstructural Evolution in Ti-6Al-4V Alloy Joints Using the Process of Friction Stir Spot Welding, Weld. Int., 2018, 32, p 570–578. https://doi.org/10.1080/09507116.2017.1347346

    Article  Google Scholar 

  23. 23.

    D. Kim, H. Badarinarayan, I. Ryu, J.H. Kim, C. Kim, K. Okamoto, R.H. Wagoner, and K. Chung, Numerical Simulation of Friction Stir Spot Welding Process for Aluminum Alloys, Met. Mater. Int., 2010, https://doi.org/10.1007/s12540-010-0425-9

    Article  Google Scholar 

  24. 24.

    P. Fanelli, F. Vivio, and V. Vullo, Experimental and Numerical Characterization of Friction Stir Spot Welded Joints, Eng. Fract. Mech., 2012, https://doi.org/10.1016/j.engfracmech.2011.07.009

    Article  Google Scholar 

  25. 25.

    S. Mandal, J. Rice, and A.A. Elmustafa, Experimental and Numerical Investigation of the Plunge Stage in Friction Stir Welding, J. Mater. Process. Technol., 2008, 203, p 411–419. https://doi.org/10.1016/j.jmatprotec.2007.10.067

    CAS  Article  Google Scholar 

  26. 26.

    M. Awang, V.H. Mucino, Z. Feng, S.A. David, Thermo-mechanical Modeling of Friction Stir Spot Welding (FSSW) Process: Use of an Explicit Adaptive Meshing Scheme, in: SAE Tech. Pap. (2005). https://doi.org/10.4271/2005-01-1251.

  27. 27.

    G. D’Urso and C. Giardini, FEM Model for the Thermo-mechanical Characterization of Friction Stir Spot Welded Joints, Int. J. Mater. Form., 2016, https://doi.org/10.1007/s12289-015-1218-y

    Article  Google Scholar 

  28. 28.

    Z. Zhang and H.W. Zhang, Numerical Studies on Controlling of Process Parameters in Friction Stir Welding, J. Mater. Process. Technol., 2009, https://doi.org/10.1016/j.jmatprotec.2008.01.044

    Article  Google Scholar 

  29. 29.

    G. Buffa, L. Fratini, M. Schneider, and M. Merklein, Micro and Macro Mechanical Characterization of Friction Stir Welded Ti-6Al-4V Lap Joints through Experiments and Numerical Simulation, J. Mater. Process. Technol., 2013, https://doi.org/10.1016/j.jmatprotec.2013.07.003

    Article  Google Scholar 

  30. 30.

    J.J. Swab, L. Vargas-Gonzalez, E. Wilson, and E. Warner, Properties and Performance of Polycrystalline Cubic Boron Nitride, Int. J. Appl. Ceram. Technol., 2015, 12, p E74–E81. https://doi.org/10.1111/ijac.12380

    CAS  Article  Google Scholar 

  31. 31.

    A.L. Pilchak and J.C. Williams, Microstructure and Texture Evolution during Friction Stir Processing of Fully Lamellar Ti-6Al-4V, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2011, https://doi.org/10.1007/s11661-010-0434-9

    Article  Google Scholar 

  32. 32.

    K.H. Muci-Küchler, S. Kalagara, and W.J. Arbegast, Simulation of a Refill Friction Stir Spot Welding Process Using a Fully Coupled Thermo-mechanical FEM Model, J. Manuf. Sci. Eng. Trans. ASME, 2010, https://doi.org/10.1115/1.4000881

    Article  Google Scholar 

  33. 33.

    Z. Xu, Z. Li, Z. Lv, and L. Zhang, Effect of Tool Rotating Speed on Microstructure and Mechanical Properties of Friction Stir Lap Welded Ti–6Al–4V Alloy, Int. J. Adv. Manuf. Technol., 2017, 90, p 3793–3800. https://doi.org/10.1007/s00170-016-9741-7

    Article  Google Scholar 

  34. 34.

    S. Mironov, Y. Zhang, Y.S. Sato, and H. Kokawa, Crystallography of Transformed β Microstructure in Friction Stir Welded Ti-6Al-4V Alloy, Scr. Mater., 2008, https://doi.org/10.1016/j.scriptamat.2008.04.038

    Article  Google Scholar 

  35. 35.

    J.W. Elmer, T.A. Palmer, S.S. Babu, W. Zhang, and T. DebRoy, Phase Transformation Dynamics during Welding of Ti-6Al-4V, J. Appl. Phys., 2004, https://doi.org/10.1063/1.1737476

    Article  Google Scholar 

  36. 36.

    A.J. Ramirez and M.C. Juhas, Microstructural Evolution in Ti-6Al-4V Friction Stir Welds, Mater. Sci. Forum, 2003, https://doi.org/10.4028/www.scientific.net/msf.426-432.2999

    Article  Google Scholar 

  37. 37.

    T.G. Nieh and J. Wadsworth, Hall–Petch Relation in Nanocrystalline Solids, Scr. Metall. Mater., 1991, https://doi.org/10.1016/0956-716X(91)90256-Z

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the funding provided by both the PROMEP program and the Aeronautical Research Center of FIME UANL.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luis A. Reyes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

García-Castillo, F.A., Reyes, L.A., Garza, C. et al. Investigation of Microstructure, Mechanical Properties, and Numerical Modeling of Ti6Al4V Joints Produced by Friction Stir Spot Welding. J. of Materi Eng and Perform (2020). https://doi.org/10.1007/s11665-020-04900-z

Download citation

Keywords

  • finite element method
  • friction stir spot welding
  • microstructure
  • Ti6Al4V