Influence of Reflow Profile on Thermal Fatigue Behaviors of Solder Ball Joints

Abstract

In electronic package design, solder joints are critical in providing electrical connections and mechanical support. The mechanical reliability of interconnection is dependent on the microstructure evolution that occurs within the solder due to the temperature changes primarily from transportation, storage, and device usage. In this study, two solder alloys, eutectic 63Sn37Pb and lead-free 95.5Sn4.0Ag0.5Cu, were tested for their thermal fatigue reliability and were observed for changes in microstructure. The different microstructures of each sample were created by controlling the cooling rate, fast or slow, during reflow. To characterize reliability, the samples endured thermal cycling − 40-125 °C until electrical failure. Finite element analysis was used to predict the primary deformation mechanism. The microstructure was inspected by cross-sectioning the solder samples using scanning electron microscopy with energy-dispersive x-ray spectroscopy. It was found that by controlling the microstructure development through the reflow rate, the solder joint’s thermal fatigue life can be extended, and concurrently, the reliability of the electronic package can be enhanced.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    S. Zhang, X. Xu, T. Lin, and P. He, Recent Advances in Nano-Materials for Packaging of Electronic Devices, J. Mater. Sci. Mater. Electron., 2019, 30(15), p 13855–13868

    CAS  Article  Google Scholar 

  2. 2.

    S. Zhang and K.-W. Paik, A Study on the Failure Mechanism and Enhanced Reliability of Sn58Bi Solder Anisotropic Conductive Film Joints in a Pressure Cooker Test Due to Polymer Viscoelastic Properties and Hydroswelling, IEEE Trans. Compon. Packag. Manuf. Technol., 2016, 6(2), p 216–223

    Article  Google Scholar 

  3. 3.

    A. Longford, Chip Packaging Challenges… A Roadmap Based Overview, Microelectron. Int., 2005, 22(2), p 17–20

    Article  Google Scholar 

  4. 4.

    I. Kim and S.B. Lee, Fatigue Life Evaluation of Lead-Free Solder Under Thermal and Mechanical Loads, in ProceedingsElectronic Components and Technology Conference, (Reno, NV) (2007), pp. 95–104

  5. 5.

    M. McCormack and S. Jin, New, Lead-Free Solders, J. Electron. Mater., 1994, 23(7), p 635–640

    CAS  Article  Google Scholar 

  6. 6.

    K. Suganuma, Advances in Lead-Free Electronics Soldering, Curr. Opin. Solid State Mater. Sci., 2001, 5(1), p 55–64

    CAS  Article  Google Scholar 

  7. 7.

    D. Shangguan, Lead-Free Solder Interconnect Reliability, ASM International, Cleveland, 2005

    Google Scholar 

  8. 8.

    S. Zhang, B. Zhu, X. Zhou, X. Wang, T. Lin, P. He, and K.W. Paik, Wettability and Interfacial Morphology of Sn-3.0Ag-0.5Cu Solder on Electroless Nickel Plated ZnS Transparent Ceramic, J. Mater. Sci. Mater. Electron., 2019, 30(19), p 17972–17985

    CAS  Article  Google Scholar 

  9. 9.

    S. Li, X. Wang, Z. Liu, Y. Jiu, S. Zhang, J. Geng, X. Chen, S. Wu, P. He, and W. Long, Corrosion Behavior of Sn-Based Lead-Free Solder Alloys: A Review, J. Mater. Sci. Mater. Electron., 2020, 31, p 1–15

    Google Scholar 

  10. 10.

    M. Li, K.Y. Lee, D.R. Olsen, W.T. Chen, B.T.C. Tan, and S. Mhaisalkar, Microstructure, Joint Strength and Failure Mechanisms of SnPb and Pb-Free Solders in BGA Packages, IEEE Trans. Electron. Packag. Manuf., 2002, 25(3), p 185–192

    CAS  Article  Google Scholar 

  11. 11.

    D.R. Frear, Microstructural Evolution During Thermomechanical Fatigue of 62Sn-36Pb-2Ag and 60Sn-40Pb Solder Joints, IEEE Trans. Compon. Hybrids Manuf. Technol., 1990, 13(4), p 718–726

    CAS  Article  Google Scholar 

  12. 12.

    J.H.L. Pang, T.H. Low, B.S. Xiong, X. Luhua, and C.C. Neo, Thermal Cycling Aging Effects on Sn-Ag-Cu Solder Joint Microstructure, IMC and Strength, Thin Solid Films, 2004, 462-463(SPEC. ISS.), p 370–375

    CAS  Article  Google Scholar 

  13. 13.

    H.L.J. Pang, K.H. Tan, X.Q. Shi, and Z.P. Wang, Microstructure and Intermetallic Growth Effects on Shear and Fatigue Strength of Solder Joints Subjected to Thermal Cycling Aging, Mater. Sci. Eng. A, 2001, 307(1-2), p 42–50

    Article  Google Scholar 

  14. 14.

    J.H.L. Pang, K.H. Tan, X. Shi, and Z.P. Wang, Thermal Cycling Aging Effects on Microstructural and Mechanical Properties of a Single PBGA Solder Joint Specimen, IEEE Trans. Compon. Packag. Technol., 2001, 24(1), p 10–15

    CAS  Article  Google Scholar 

  15. 15.

    S. Nurmi, J. Sundelin, E. Ristolainen, and T. Lepistö, The Effect of Solder Paste Composition on the Reliability of SnAgCu Joints, Microelectron. Reliab., 2004, 44(3), p 485–494

    CAS  Article  Google Scholar 

  16. 16.

    C.K. Lin and D.Y. Chu, Creep Rupture of Lead-Free Sn-3.5Ag and Sn-3.5Ag-0.5Cu Solders, J. Mater. Sci. Mater. Electron., 2005, 16(6), p 355–365

    CAS  Article  Google Scholar 

  17. 17.

    S. Wiese and K.J. Wolter, Microstructure and Creep Behaviour of Eutectic SnAg and SnAgCu Solders, Microelectron. Reliab., 2004, 44(12), p 1923–1931

    CAS  Article  Google Scholar 

  18. 18.

    V.I. Igoshev, J.I. Kleiman, D. Shangguan, S. Wong, and U. Michon, Fracture of Sn-3.5%Ag Solder Alloy under Creep, J. Electron. Mater., 2000, 29(12), p 1356–1361

    CAS  Article  Google Scholar 

  19. 19.

    D.K. Joo, J. Yu, and S.W. Shin, Creep Rupture of Lead-Free Sn-3.5Ag-Cu Solders, J. Electron. Mater., 2003, 32(6), p 541–547

    CAS  Article  Google Scholar 

  20. 20.

    J.J. Sundelin, S.T. Nurmi, T.K. Lepistö, and E.O. Ristolainen, Microstructure, Creep Properties, and Failure Mechanism of SnAgCu Solder Joints, J. Electron. Mater., 2006, 35(7), p 1600–1606

    CAS  Article  Google Scholar 

  21. 21.

    C. Kanchanomai, Y. Miyashita, and Y. Mutoh, Low Cycle Fatigue Behavior and Mechanisms of a Eutectic Sn-Pb Solder 63Sn/37Pb, Int. J. Fatigue, 2002, 24(6), p 671–683

    CAS  Article  Google Scholar 

  22. 22.

    S.H. Fan, Y.C. Chan, C.W. Tang, and J.K.L. Lai, Aging Studies of PBGA Solder Joints Reflowed at Different Conveyor Speeds, IEEE Trans. Adv. Packag., 2001, 24(4), p 486–492

    CAS  Article  Google Scholar 

  23. 23.

    J.H. Constable, W. Butler, C. Huang, and J.M. Pitarresi, CSP Fatigue Life Predictions Based on Electrical Resistance Change, Adv. Electron. Packag., 2001, 1, p 1–7

    Google Scholar 

  24. 24.

    Temperature Cycling 22-A104-B, JEDEC Standard, JEDEC Solid State Technology Association (2005)

  25. 25.

    M. Yunus, K. Srihari, J.M. Pitarresi, and A. Primavera, Effect of Voids on the Reliability of BGA/CSP Solder Joints, Microelectron. Reliab., 2003, 43(12), p 2077–2086

    Article  Google Scholar 

  26. 26.

    B.Z. Hong, Thermal Fatigue Analysis of a CBGA Package with Lead-Free Solder Fillets in Thermomechanical Phenomena in Electronic Systems -Proceedings of the Intersociety Conference, (Seattle, WA) (IEEE, 1998), pp. 205–211

  27. 27.

    B.Z. Hong, Finite Element Modeling of Thermal Fatigue and Damage of Solder Joints in a Ceramic Ball Grid Array Package, J. Electron. Mater., 1997, 26(7), p 814–820

    CAS  Article  Google Scholar 

  28. 28.

    J. Lau, W. Dauksher, and P. Vianco,“Acceleration Models, Constitutive Equations, and Reliability of Lead-Free Solders and Joints, in 53rd Electronic Components and Technology Conference, (New Orleans, Louisiana) (2003), pp. 229–236

  29. 29.

    Y. Zhang, H. Zhu, M. Fujiwara, J. Xu, and M. Dao, Low-Temperature Creep of SnPb and SnAgCu Solder Alloys and Reliability Prediction in Electronic Packaging Modules, Scr. Mater., 2013, 68(8), p 607–610

    CAS  Article  Google Scholar 

  30. 30.

    B. Wong, D.E. Helling, and R.W. Clark, A Creep-Rupture Model for Two-Phase Eutectic Solders, IEEE Trans. Compon. Hybrids Manuf. Technol., 1988, 11(3), p 284–290

    CAS  Article  Google Scholar 

  31. 31.

    P. Sharma and A. Dasgupta, Micro-Mechanics of Creep-Fatigue Damage in PB-SN Solder Due to Thermal Cycling—Part I: Formulation, J. Electron. Packag. Trans. ASME, 2002, 124(3), p 292–297

    CAS  Article  Google Scholar 

  32. 32.

    M.N. Islam, Y.C. Chan, M.J. Rizvi, and W. Jillek, Investigations of Interfacial Reactions of Sn-Zn Based and Sn-Ag-Cu Lead-Free Solder Alloys as Replacement for Sn-Pb Solder, J. Alloys Compd., 2005, 400(1-2), p 136–144

    CAS  Article  Google Scholar 

  33. 33.

    J.W. Yoon, B.I. Noh, B.K. Kim, C.C. Shur, and S.B. Jung, Wettability and Interfacial Reactions of Sn-Ag-Cu/Cu and Sn-Ag-Ni/Cu Solder Joints, J. Alloys Compd., 2009, 486(1-2), p 142–147

    CAS  Article  Google Scholar 

  34. 34.

    P. Sun, C. Andersson, X. Wei, Z. Cheng, D. Shangguan, and J. Liu, Intermetallic Compound Formation in Sn-Co-Cu, Sn-Ag-Cu and Eutectic Sn-Cu Solder Joints on Electroless Ni(P) Immersion Au Surface Finish after Reflow Soldering, in 2006 Conference on High Density Microsystem Design and Packaging and Component Failure Analysis, HDP’06, (Shanghai) (2006), pp. 287–291

  35. 35.

    K.J. Puttlitz and K.A. Stalter, Handbook of Lead-Free Solder Technology for Microelectronic Assemblies, CRC Press, Boca Raton, 2004

    Google Scholar 

  36. 36.

    S. Zhang, M. Yang, Y. Wu, J. Du, T. Lin, P. He, M. Huang, and K.W. Paik, A Study on the Optimization of Anisotropic Conductive Films for Sn-3Ag-0.5Cu-Based Flex-on-Board Application at a 250 °C Bonding Temperature, IEEE Trans. Compon. Packag. Manuf. Technol., 2018, 8(3), p 383–391

    CAS  Article  Google Scholar 

  37. 37.

    S. Zhang, T. Lin, P. He, and K.W. Paik, Effects of Acrylic Adhesives Property and Optimized Bonding Parameters on Sn-58Bi Solder Joint Morphology for Flex-on-Board Assembly, Microelectron. Reliab., 2017, 78, p 181–189

    CAS  Article  Google Scholar 

Download references

Acknowledgments

JER was supported by the new faculty start-up fund at NCSU. EYS thanks the NCSU MAE Undergraduate Research Scholars Award for support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jong E. Ryu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seo, E.Y., Ryu, J.E. Influence of Reflow Profile on Thermal Fatigue Behaviors of Solder Ball Joints. J. of Materi Eng and Perform (2020). https://doi.org/10.1007/s11665-020-04899-3

Download citation

Keywords

  • intermetallic compound
  • microstructure
  • Sn-Ag-Cu
  • Sn-Pb
  • solder ball
  • thermal fatigue