Sinterability of Silicon Carbide and Boron Carbide under Single-Mode Microwave Fields


The feasibility of processing silicon carbide (SiC) and boron carbide (B4C) using a 2.45 GHz single-mode microwave system has been investigated. In order to determine the appropriate sintering conditions, samples were processed under various electric/magnetic (E/H) field ratios. Proportional 50% E/H-field ratios and 100% H-field conditions resulted in higher sample temperatures up to 1500 °C under equivalent microwave power. Sinterability was improved by adding B4C and carbon to SiC, but limited to a thin outer layer of the pellet. While partial densification was observed under all conditions, isolated regions of full densification in microwave-processed B4C samples were observed under 100% H-field mode. Microstructural analysis of microwave-processed SiC with and without additives indicated non-uniform sintering, while B4C showed evidence of relatively homogeneous microstructures.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    R. Raj, Joule Heating during Flash-Sintering, J. Eur. Ceram. Soc., 2012, 32, p 2293-2301

    CAS  Article  Google Scholar 

  2. 2.

    E.A. Olevsky, S.M. Rolfing, and A.L. Maximenko, Flash (Ultra-Rapid) Spark-Plasma Sintering of Silicon Carbide, Sci. Rep., 2016, 6, p 33408

    CAS  Article  Google Scholar 

  3. 3.

    K.I. Rybakov, E.A. Olevsky, and E.V. Krikun, Microwave Sintering: Fundamentals and Modeling, J. Am. Ceram. Soc., 2013, 96(4), p 1003-1020

    CAS  Article  Google Scholar 

  4. 4.

    R. Pavlacka, C. Brennan, V. Blair, R. Brennan, C. Fountzoulas, J. Cheng, and D. Agrawal, Single-Mode Microwave Sintering of Er:Al2O3, Process. Prop. Adv. Ceram. Compos. VII: Ceram. Trans., 2016, 252, p 3-11

    Google Scholar 

  5. 5.

    R.R. Mishra and A.K. Sharma, Microwave-Material Interaction Phenomena: Heating Mechanisms, Challenges and Opportunities in Material Processing, Compos.: Part A, 2016, 81, p 78-97

    CAS  Article  Google Scholar 

  6. 6.

    M. Madhan and G. Prabhakaran, Microwave Versus Conventional Sintering: Microstructure and Mechanical Properties ofAl2O3-SiC Ceramic Composites, Boletín de la Sociedad Española de Cerámica y Vidrio, 2019, 58, p 14-22

    Article  Google Scholar 

  7. 7.

    M. Oghbaei and O. Mirzaee, Microwave Versus Conventional Sintering: A Review of Fundamentals, Advantages and Applications, J. Alloys Compd., 2010, 494, p 175-189

    CAS  Article  Google Scholar 

  8. 8.

    X.-J. Gao, J.-W. Cao, L.-F. Cheng, D.-M. Yan, C. Zhang, and P. Man, Effect of Carbon Content on Mechanical Properties of SiC/B4C Prepared by Reaction Sintering, J. Inorg. Mater., 2015, 30, p 102

    CAS  Article  Google Scholar 

  9. 9.

    X.-J. Gao, J.-W. Cao, L.-F. Cheng, D.-M. Yan, C. Zhang, P. Man, C. Wang, F. Huang, Y. Jiang, Y. Zhou, L. Du, and G. Mera, A Novel Oxidation Resistant SiC/B4C/C Nanocomposite Derived from a Carborane-Containing Conjugated Polycarbosilane, J. Am. Ceram. Soc., 2012, 95, p 71-74

    Article  Google Scholar 

  10. 10.

    X.-J. Gao, L.-F. Cheng, J.-W. Cao, D.-M. Yan, C. Zhang, P. Man, J.-F. Qu, Y.-W. Zhou, and S.-J. Sun, Effect of Carbon Contents on Microstructure of B4C/SiC Composites, Optoelectron. Adv. Mater. Rapid Commun., 2015, 9, p 482-487

    CAS  Google Scholar 

  11. 11.

    R. Rocha and F. Melo, Pressureless Sintering of B4C-SiC Composites for Armor Applications, Ceram. Eng. Sci. Proc., 2010, 30(2010), p 113-119

    Google Scholar 

  12. 12.

    Z. Zhang, X. Du, W. Wang, Z. Fu, and H. Wang, Preparation of B4C-SiC Composite Ceramics Through Hot Pressing Assisted by Mechanical Alloying, Int. J. Refract. Met. Hard Mater., 2013, 41, p 270-275

    CAS  Article  Google Scholar 

  13. 13.

    C.H. Jung and C.H. Kim, Sintering and Characterization of Al2O3-B4C Composites, J. Mater. Sci., 1991, 26, p 5037-5040

    CAS  Article  Google Scholar 

  14. 14.

    X. Lin and P.D. Ownby, Pressureless Sintering of B4C Whisker Reinforced Al2O3 Matrix Composites, J. Mater. Sci., 2000, 35, p 411-418

    CAS  Article  Google Scholar 

  15. 15.

    G. Gorny, M. Raczka, L. Stobierski, L. Wojnar, and R. Pampuch, Microstructure Property Relationship in B4C-β-SiC Materials, Solid State Ion, 1997, 101, p 953-958

    Article  Google Scholar 

  16. 16.

    L. Stobierski and A. Gubernat, Sintering of Silicon Carbide II. Effect of Boron, Ceram. Int., 2003, 29, p 355-361

    CAS  Article  Google Scholar 

  17. 17.

    P.T.B. Shaffer, Solubility of Boron in Alpha Silicon Carbide, Mater. Res. Bull., 1970, 5, p 519-521

    CAS  Article  Google Scholar 

  18. 18.

    G. Mugnai, G. Beltrami, and L. Piotti Minoccari, Pressureless Sintering and Properties of Alpha SiC-B4C Composite, J. Eur. Ceram. Soc., 2001, 21, p 633-638

    Article  Google Scholar 

  19. 19.

    R. Hamminger, Carbon Inclusions in Sintered Silicon Carbide, J. Am. Ceram. Soc., 1989, 72, p 1741-1744

    CAS  Article  Google Scholar 

  20. 20.

    J.A. Menéndez, A. Arenillas, B. Fidalgo, Y. Fernández, L. Zubizarreta, E.G. Calvo, and J.M. Bermúdez, Microwave Heating Processes Involving Carbon Materials, Fuel Process. Technol., 2010, 91, p 1-8

    Article  Google Scholar 

  21. 21.

    B. Vos, J. Mosman, Y. Zhang, E. Poels, and A. Bliek, Impregnated Carbon as a Susceptor Material for Low Loss Oxides in Dielectric Heating, J. Mater. Sci., 2003, 38, p 173-182

    CAS  Article  Google Scholar 

  22. 22.

    S. Ahmadbeygi, M. Khodaei, A. Nemati, and O. Yaghobizadeh, Fabrication of SiC Body by Microwave Sintering Process, J. Mater. Sci.: Mater. Electron., 2017, 28, p 5675-5685

    CAS  Google Scholar 

  23. 23.

    C. Singhal, Q. Murtaza, and P. Alam, Microwave Sintering of Advanced Composites Materials: A Review, Mater. Today Proc., 2018, 5, p 24287-24298

    Article  Google Scholar 

  24. 24.

    V.L. Blair, S.V. Raju, M. Kornecki, and R.E Brennan, Single-Mode Microwave Sintering of Traditionally Resistant Materials, ARL Tech. Rep., 8466 (2017)

  25. 25.

    J. Cheng, R. Roy, and D. Agrawal, Radically Different Effects on Materials by Separated Microwave Electric and Magnetic Fields, Mater. Res. Innov., 2002, 5, p 170-177

    CAS  Article  Google Scholar 

  26. 26.

    J. Cheng, D. Agrawal, S. Komarneni, M. Mathis, and R. Roy, Microwave Processing of WC-Co Composites and Ferroic Titanates, Mater. Res. Innov., 1997, 1, p 44-52

    CAS  Article  Google Scholar 

  27. 27.

    E. Breval, J. Cheng, D. Agrawal, P. Gigl, A. Dennis, R. Roy, and A. Papworth, Comparison Between Microwave and Conventional Sintering of WC/Co Composite, Mater. Sci. Eng. A- Struct. Mater. Prop. Microstruct. Process., 2005, 391, p 285-295

    Article  Google Scholar 

  28. 28.

    Thuault, S. Marinel, E. Savary, R. Heuguet, S. Saunier, D. Goeuriot, and D. Agrawal, Processing of Reaction-Bonded B4C-SiC Composites in a Single-Mode Microwave Cavity, Ceram. Int., 2013, 39, p 1215-1219

    CAS  Article  Google Scholar 

  29. 29.

    S. Brunauer, P.H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc., 1938, 60, p 309-319

    CAS  Article  Google Scholar 

  30. 30.

    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, and T. Siemieniewska, Reporting Physical Adsorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (IUPAC Recommendations 1984), Pure Appl. Chem., 1984, 57(1985), p 603-619

    Google Scholar 

  31. 31.

    J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, and K.K. Unger, Recommendations for the Characterization of Porous Solids (IUPAC Recommendations 1994), Pure Appl. Chem., 1994, 66(1994), p 1739-1758

    CAS  Article  Google Scholar 

  32. 32.

    D. Demirskyi and O. Vasylkiv, Microstructure and Mechanical Properties of Boron Suboxide Ceramics Prepared by Pressureless Microwave Sintering, Ceram. Int., 2016, 42, p 14282-14286

    CAS  Article  Google Scholar 

Download references


The authors sincerely thank Dr. Jerry LaSalvia (CTMB, ARL) for helpful discussions, Dr. Victoria Blair (CTMB, ARL) for help with initial ball milling of SiC-B4C-C powders, Dr. Steve Kilczewski (CTMB, ARL) for help with cold isostatic pressing of samples, and Ms. Aubrey Fry (CTMB, ARL) and Ms. Carli Moorehead (CTMB, ARL) for help with powder characterization measurements. S.V. Raju was sponsored by the CCDC Army Research Laboratory (ARL) under Cooperative Agreement No. W911NF-16-2-0050. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of ARL or the US Government. The US Government is authorized to reproduce and distribute reprints for government purposes notwithstanding any copyright notation herein. The research reported in this document was performed in connection with contract/instrument W911QX-16-D-0014 with the ARL. The views and conclusions contained in this document are those of SURVICE Engineering and ARL. Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof. The US Government is authorized to reproduce and distribute reprints for government purposes notwithstanding any copyright notation hereon.

Author information



Corresponding author

Correspondence to Raymond E. Brennan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited paper selected from presentations at the “11th International Symposium on Green and Sustainable Technologies for Materials Manufacturing and Processing,” held during Materials Science & Technology (MS&T’19), September 29–October 3, 2019, in Portland, OR, and has been expanded from the original presentation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raju, S.V., Kornecki, M. & Brennan, R.E. Sinterability of Silicon Carbide and Boron Carbide under Single-Mode Microwave Fields. J. of Materi Eng and Perform (2020).

Download citation


  • carbides
  • microstructure
  • microwave processing
  • x-ray diffraction