Corrosion Inhibition of l-Methionine Amino Acid as a Green Corrosion Inhibitor for Stainless Steel in the H2SO4 Solution

Abstract

This study investigated the effect of l-methionine (LMT) on the corrosion behavior of AISI309S stainless steel in 1 M H2SO4 solution using electrochemical impedance spectroscopy (EIS), Tafel polarization, and electrochemical noise methods. The performance of corrosion inhibition was analyzed by scanning electron microscopy, atomic force microscopy, adsorption isotherms, x-ray photoelectron spectroscopy (XPS), and contact angle measurement. The electrochemical studies revealed a significant increase in the charge transfer resistance and a reduction in the corrosion current density in the presence of LMT in the acidic media. The results of the EIS and Tafel tests determined the corrosion inhibition efficiency to be about 97% and 95%, respectively. The microscopy analysis showed that the surface suffered lower corrosion damages in the presence of LMT. Besides, the adsorption of LMT on the anodic sites of the surface through its sulfur atom was verified by EIS and XPS studies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    M. Mobin, M. Parveen, and M.Z.A. Rafiquee, Synergistic Effect of Sodium Dodecyl Sulfate and Cetyltrimethyl Ammonium Bromide on the Corrosion Inhibition Behavior of l-Methionine on Mild Steel in Acidic Medium, Arab. J. Chem., 2017, 10, p S1364–S1372. https://doi.org/10.1016/j.arabjc.2013.04.006

    CAS  Article  Google Scholar 

  2. 2.

    L. Hamadi, S. Mansouri, K. Oulmi, and A. Kareche, The Use of Amino Acids as Corrosion Inhibitors for Metals: A Review, Egypt. J. Pet., 2018, 27, p 1157–1165. https://doi.org/10.1016/j.ejpe.2018.04.004

    Article  Google Scholar 

  3. 3.

    J.A. Thangakani, S. Rajendran, J. Sathiabama, R.J. Rathish, and S. Santhanaprabha, Corrosion Inhibition of Carbon Steel in Well Water by l-Cysteine-Zn2+ System, Port. Electrochim. Acta, 2017, 35, p 13–25. https://doi.org/10.4152/pea.201701013

    CAS  Article  Google Scholar 

  4. 4.

    M.S.S. Morad, A.E.-H.A. Hermas, and M.S. Abdel Aal, Effect of Amino Acids Containing Sulfur on the Corrosion of Mild Steel in Phosphoric Acid Solutions Polluted with Cl, F and Fe+3 Ions—Behaviour Near and at the Corrosion Potential, J. Chem. Technol. Biotechnol., 2002, 77, p 486–494. https://doi.org/10.1002/jctb.588

    CAS  Article  Google Scholar 

  5. 5.

    K.F. Khaled, Monte Carlo Simulations of Corrosion Inhibition of Mild Steel in 0.5 M Sulphuric Acid by Some Green Corrosion Inhibitors, J. Solid State Electrochem., 2009, 13, p 1743–1756. https://doi.org/10.1007/s10008-009-0845-y

    CAS  Article  Google Scholar 

  6. 6.

    E.B. Ituen, O. Akaranta, and S.A. Umoren, N-Acetyl Cysteine Based Corrosion Inhibitor Formulations for Steel Protection in 15% HCl Solution, J. Mol. Liq., 2017, 246, p 112–118. https://doi.org/10.1016/j.molliq.2017.09.040

    CAS  Article  Google Scholar 

  7. 7.

    J.J. Fu, S.N. Li, Y. Wang, L.H. Cao, and L.D. Lu, Computational and Electrochemical Studies of Some Amino Acid Compounds as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solution, J. Mater. Sci., 2010, 45, p 6255–6265. https://doi.org/10.1007/s10853-010-4720-0

    CAS  Article  Google Scholar 

  8. 8.

    Z. Zhang, W. Li, W. Zhang, X. Huang, L. Ruan, and L. Wu, Experimental, Quantum Chemical Calculations and Molecular Dynamics (MD) Simulation Studies of Methionine and Valine as Corrosion Inhibitors on Carbon Steel in Phase Change Materials (PCMs) Solution, J. Mol. Liq., 2018, 272, p 528–538. https://doi.org/10.1016/j.molliq.2018.09.081

    CAS  Article  Google Scholar 

  9. 9.

    G.M.A. El-Hafez and W.A. Badawy, The Use of Cysteine, N-Acetyl Cysteine and Methionine as Environmentally Friendly Corrosion Inhibitors for Cu–10Al–5Ni Alloy in Neutral Chloride Solutions, Electrochim. Acta, 2013, 108, p 860–866. https://doi.org/10.1016/j.electacta.2013.06.079

    CAS  Article  Google Scholar 

  10. 10.

    B. El Ibrahimi, A. Jmiai, L. Bazzi, and S. El Issami, Amino Acids and Their Derivatives as Corrosion Inhibitors for Metals and Alloys, Arab. J. Chem., 2017, https://doi.org/10.1016/j.arabjc.2017.07.013

    Article  Google Scholar 

  11. 11.

    M.S. Morad, Effect of Sulfur-Containing Amino Acids on the Corrosion of Mild Steel in Sulfide-Polluted Sulfuric Acid Solutions, J. Appl. Electrochem., 2007, 37, p 1191–1200. https://doi.org/10.1007/s10800-007-9386-1

    CAS  Article  Google Scholar 

  12. 12.

    M.A. Amin, K.F. Khaled, Q. Mohsen, and H.A. Arida, A Study of the Inhibition of Iron Corrosion in HCl Solutions by Some Amino Acids, Corros. Sci., 2010, 52, p 1684–1695. https://doi.org/10.1016/j.corsci.2010.01.019

    CAS  Article  Google Scholar 

  13. 13.

    M. Zerfaouia, H. Oudda, B. Hammouti, S. Kertit, and M. Benkaddour, Inhibition of Corrosion of Iron in Citric Acid Media by Amino Acids, Prog. Org. Coat., 2004, 51, p 134–138. https://doi.org/10.1016/j.porgcoat.2004.05.005

    CAS  Article  Google Scholar 

  14. 14.

    H. Ashassi-Sorkhabi, M.R. Majidi, and K. Seyyedi, Investigation of Inhibition Effect of Some Amino Acids Against Steel Corrosion in HCl Solution, Appl. Surf. Sci., 2004, 225, p 176–185. https://doi.org/10.1016/j.apsusc.2003.10.007

    CAS  Article  Google Scholar 

  15. 15.

    L.K.M.O. Goni, M.A.J. Mazumder, S.A. Ali, M.K. Nazal, and H.A. Al-Muallem, Biogenic Amino Acid Methionine-Based Corrosion Inhibitors of Mild Steel in Acidic Media, Int. J. Min. Metall. Mater., 2019, 26, p 467–482. https://doi.org/10.1007/s12613-019-1754-4

    CAS  Article  Google Scholar 

  16. 16.

    A.A. El-Shafei, M.N.H. Moussa, and A.A. El-Far, Inhibitory Effect of Amino Acids on Al Pitting Corrosion in 0.1 m NaCl, J. Appl. Electrochem., 1997, 27, p 1075–1078. https://doi.org/10.1023/A:1018490727290

    CAS  Article  Google Scholar 

  17. 17.

    C. Zhu, H.X. Yang, Y.Z. Wang, D.Q. Zhang, and Y.C.X. Gao, Synergistic Effect Between Glutamic Acid and Rare Earth Cerium (III) as Corrosion Inhibitors on AA5052 Aluminum Alloy in Neutral Chloride Medium, Ionics, 2019, 25, p 1395–1406. https://doi.org/10.1007/s11581-018-2605-4

    CAS  Article  Google Scholar 

  18. 18.

    G. Gece and S. Bilgiç, A Theoretical Study on the Inhibition Efficiencies of Some Amino Acids as Corrosion Inhibitors of Nickel, Corros. Sci., 2010, 52, p 3435–3443. https://doi.org/10.1016/j.corsci.2010.06.015

    CAS  Article  Google Scholar 

  19. 19.

    A.A. Aksüt and S. Bilgic, The Effect of Amino Acids on the Corrosion of Nickel in H2SO4, Corros. Sci., 1992, 33, p 379–387. https://doi.org/10.1016/0010-938X(92)90067-D

    Article  Google Scholar 

  20. 20.

    K. Barouni, L. Bazzi, R. Salghi, M. Mihit, B. Hammouti, A. Albourine, and S. El Issami, Some Amino Acids as Corrosion Inhibitors for Copper in Nitric Acid Solution, Mater. Lett., 2008, 62, p 3325–3327. https://doi.org/10.1016/j.matlet.2008.02.068

    CAS  Article  Google Scholar 

  21. 21.

    K.F. Khaled, Corrosion Control of Copper in Nitric Acid Solutions Using Some Amino Acids—A Combined Experimental and Theoretical Study, Corros. Sci., 2010, 52, p 3225–3234. https://doi.org/10.1016/j.corsci.2010.05.039

    CAS  Article  Google Scholar 

  22. 22.

    W.A. Badawy, K.M. Ismail, and A.M. Fathi, Corrosion Control of Cu–Ni Alloys in Neutral Chloride Solutions by Amino Acids, Electrochim. Acta, 2006, 51, p 4182–4189. https://doi.org/10.1016/j.electacta.2005.11.037

    CAS  Article  Google Scholar 

  23. 23.

    H. Saifia, M.C. Bernard, S. Joiret, K. Rahmouni, H. Takenouti, and B. Talhi, Corrosion Inhibitive Action of Cysteine on Cu–30Ni Alloy in Aerated 0.5 M H2SO4, Mater. Chem. Phys., 2010, 120, p 661–669. https://doi.org/10.1016/j.matchemphys.2009.12.011

    CAS  Article  Google Scholar 

  24. 24.

    X. Li, W. Li, S. Yang, and L. Hou, Using Methionine as an Environment-Friendly Corrosion Inhibitor for Copper–Nickel Alloy in a Chloride Solution, Mater. Express, 2017, 7, p 480–490. https://doi.org/10.1166/mex.2017.1397

    CAS  Article  Google Scholar 

  25. 25.

    N.A. Abdel Ghanyl, A.E. El-Shenawy, and W.A.M. Hussien, The Inhibitive Effect of Some Amino Acids on the Corrosion Behaviour of 316L Stainless Steel in Sulfuric Acid Solution, Mod. Appl. Sci., 2011, 5, p 19–30. https://doi.org/10.5539/mas.v5n4p19

    CAS  Article  Google Scholar 

  26. 26.

    S. Vikneshvaran and S. Velmathi, Adsorption of l-Tryptophan-Derived Chiral Schiff Bases on Stainless Steel Surface for the Prevention of Corrosion in Acidic Environment: Experimental, Theoretical and Surface Studies, Surf. Interfaces, 2017, 6, p 134–142. https://doi.org/10.1016/j.surfin.2017.01.001

    CAS  Article  Google Scholar 

  27. 27.

    A.B. Silva, S.M.L. Agostinho, O.E. Barcia, G.G.O. Cordeiro, and E. D’Elia, The Effect of Cysteine on the Corrosion of 304L Stainless Steel in Sulphuric Acid, Corros. Sci., 2006, 48(11), p 3668–3674. https://doi.org/10.1016/j.corsci.2006.02.003

    CAS  Article  Google Scholar 

  28. 28.

    L. Madkour and M. Ghoneim, Inhibition of the Corrosion of 16/14 Austenitic Stainless Steel by Oxygen and Nitrogen Containing Compounds, Bull. Electrochem., 1997, 13, p 1–7

    CAS  Google Scholar 

  29. 29.

    W. Ye, Y. Li, and F. Wang, Effects of Nanocrystallization on the Corrosion Behavior of 309 Stainless Steel, Electrochim. Acta, 2006, 51, p 4426–4432. https://doi.org/10.1016/j.electacta.2005.12.034

    CAS  Article  Google Scholar 

  30. 30.

    W. Ye, Y. Li, and F. Wang, The Improvement of the Corrosion Resistance of 309 Stainless Steel in the Transpassive Region by Nano-Crystallization, Electrochim. Acta, 2009, 54, p 1339–1349. https://doi.org/10.1016/j.electacta.2008.08.073

    CAS  Article  Google Scholar 

  31. 31.

    K. Fushimi, A. Naganuma, K. Azumi, and Y. Kawahara, Current Distribution during Galvanic Corrosion of Carbon Steel Welded with Type-309 Stainless Steel in NaCl Solution, Corros. Sci., 2008, 50, p 903–911. https://doi.org/10.1016/j.corsci.2007.10.003

    CAS  Article  Google Scholar 

  32. 32.

    A. Gharbi, A. Himour, S. Abderrahmane, and K. Abderrahim, Inhibition Effect of 2,2′-Bipyridyl on the Corrosion of Austenitic Stainless Steel in 0.5 M H2SO4, Orient. J. Chem., 2018, 34, p 314–325. https://doi.org/10.13005/ojc/340134

    CAS  Article  Google Scholar 

  33. 33.

    S.Y. Kim, H.S. Kwon, and H. Kim, Effect of Delta Ferrite on Corrosion Resistance of Type 316L Stainless Steel in Acidic Chloride Solution by Micro-droplet Cell, Solid State Phenom., 2007, 124–126, p 1533–1536. https://doi.org/10.4028/www.scientific.net/SSP.124-126.1533

    Article  Google Scholar 

  34. 34.

    R.T. Loto and E. Özcan, Corrosion Resistance Studies of Austenitic Stainless Steel Grades in Molten Zinc–Aluminum Alloy Galvanizing Bath, J. Fail. Anal. Prev., 2016, 16, p 427–437. https://doi.org/10.1007/s11668-016-0103-4

    Article  Google Scholar 

  35. 35.

    T. Rabizadeh and S. Khameneh-Asl, Casein as a Natural Protein to Inhibit the Corrosion of Mild Steel in HCl Solution, J. Mol. Liq., 2019, 276, p 694–704. https://doi.org/10.1016/j.molliq.2018.11.162

    CAS  Article  Google Scholar 

  36. 36.

    H. Ashassi-Sorkhabi and E. Asghari, Effect of Hydrodynamic Conditions on the Inhibition Performance of l-Methionine as a “Green” Inhibitor, Electrochim. Acta, 2008, 54, p 162–167. https://doi.org/10.1016/j.electacta.2008.08.024

    CAS  Article  Google Scholar 

  37. 37.

    V. Shkirskiy, P. Keil, H. Hintze-Bruening, F. Leroux, F. Brisset, K. Ogle, and P. Volovitch, The Effects of l-Cysteine on the Inhibition and Accelerated Dissolution Processes of Zinc Metal, Corros. Sci., 2015, 100, p 101–112. https://doi.org/10.1016/j.corsci.2015.07.010

    CAS  Article  Google Scholar 

  38. 38.

    M.A. Chidiebere, E.E. Oguzie, L. Liu, Y. Li, and F. Wang, Ascorbic Acid as Corrosion Inhibitor for Q235 Mild Steel in Acidic Environments, J. Ind. Eng. Chem., 2015, 26, p 182–192. https://doi.org/10.1016/j.jiec.2014.11.029

    CAS  Article  Google Scholar 

  39. 39.

    M. Yeganeh, M. Omidi, and M. Eskandari, Superhydrophobic Surface of AZ31 Alloy Fabricated by Chemical Treatment in the NiSO4 Solution, J. Mater. Eng. Perform., 2018, 27, p 3951–3960. https://doi.org/10.1007/s11665-018-3479-3

    CAS  Article  Google Scholar 

  40. 40.

    M. Yeganeh, M. Eskandari, and S.R. Alavi-Zaree, A Comparison Between Corrosion Behaviors of Fine-Grained and Coarse-Grained Structures of High-Mn Steel in NaCl Solution, J. Mater. Eng. Perform., 2017, 26, p 2484–2490. https://doi.org/10.1007/s11665-017-2685-8

    CAS  Article  Google Scholar 

  41. 41.

    S. Zor, F. Kandemirli, and M. Bingu, Inhibition Effects of Methionine and Tyrosine on Corrosion of Iron in HCl Solution: Electrochemical, FTIR, and Quantum-Chemical Study, Prot. Met. Phys. Chem. Surf., 2009, 45, p 46–53

    CAS  Article  Google Scholar 

  42. 42.

    K. Barouni, A. Kassale, A. Albourine, O. Jbara, B. Hammouti, and L. Bazzi, Amino Acids as Corrosion Inhibitors for Copper in Nitric Acid Medium: Experimental and Theoretical Study, J. Mater. Environ. Sci., 2014, 5, p 456–463

    CAS  Google Scholar 

  43. 43.

    K. Wan, P. Feng, B. Hou, and Y. Li, Enhanced Corrosion Inhibition Properties of Carboxymethyl Hydroxypropyl Chitosan for Mild Steel in 10 M HCl Solution, RSC Adv., 2016, 6, p 77515–77524. https://doi.org/10.1039/C6RA12975G

    CAS  Article  Google Scholar 

  44. 44.

    S. Jagadeesan, P. Sounthari, K. Parameswari, and S. Chitra, Acenaphtho[1,2-b]quinoxaline and Acenaphtho[1,2-b]pyrazine as Corrosion Inhibitors for Mild Steel in Acid Medium, Measurement, 2015, 77, p 175–186. https://doi.org/10.1016/j.measurement.2015.09.008

    Article  Google Scholar 

  45. 45.

    E.E. Oguzie, Y. Li, and F.H. Wang, Corrosion Inhibition and Adsorption Behavior of Methionine on Mild Steel in Sulfuric Acid and Synergistic Effect of Iodide Ion, J. Colloid Interface Sci., 2007, 310, p 90–98. https://doi.org/10.1016/j.jcis.2007.01.038

    CAS  Article  Google Scholar 

  46. 46.

    M. Saremi and M. Yeganeh, Corrosion Behavior of Copper Thin Films Deposited by EB-PVD Technique on Thermally Grown Silicon Dioxide and Glass in Hydrochloric Acid Media, Mater. Chem. Phys., 2010, 123, p 456–462. https://doi.org/10.1016/j.matchemphys.2010.04.041

    CAS  Article  Google Scholar 

  47. 47.

    D.Q. Zhang, B. Xie, L.X. Gao, H.G. Joo, and K.Y. Lee, Inhibition of Copper Corrosion in Acidic Chloride Solution by Methionine Combined with Cetrimonium Bromide/Cetylpyridinium Bromide, J. Appl. Electrochem., 2011, 41, p 491–498. https://doi.org/10.1007/s10800-011-0259-2

    CAS  Article  Google Scholar 

  48. 48.

    M. Saremi and M. Yeganeh, Investigation of Corrosion Behaviour of Nanostructured Copper Thin Film Produced by Radio Frequency Sputtering, Micro Nano Lett., 2010, 5, p 70–75. https://doi.org/10.1049/mnl.2009.0111

    CAS  Article  Google Scholar 

  49. 49.

    M.A. Amin, Weight Loss, Polarization, Electrochemical Impedance Spectroscopy, SEM and EDX Studies of the Corrosion Inhibition of Copper in Aerated NaCl Solutions, J. Appl. Electrochem., 2006, 36, p 215–226. https://doi.org/10.1007/s10800-005-9055-1

    CAS  Article  Google Scholar 

  50. 50.

    R. Solmaz, Investigation of Corrosion Inhibition Mechanism and Stability of Vitamin B1 on Mild Steel in 0.5 M HCl Solution, Corros. Sci., 2014, 81, p 75–84. https://doi.org/10.1016/j.corsci.2013.12.006

    CAS  Article  Google Scholar 

  51. 51.

    A.R. Hoseinzadeh, I. Danaee, and M.H. Maddahy, Thermodynamic and Adsorption Behaviour of Vitamin B1 as a Corrosion Inhibitor for AIS 4130 Steel Alloy in HCl Solution, Z. Phys. Chem., 2013, 227, p 403–417. https://doi.org/10.1524/zpch.2013.0276

    CAS  Article  Google Scholar 

  52. 52.

    M. Özcan, F. Karadağ, and İ. Dehric, Investigation of Adsorption Characteristics of Methionine at Mild Steel/Sulfuric Acid Interface: An Experimental and Theoretical Study, Colloid Surf. A Physicochem. Eng. Aspects, 2008, 316, p 55–61. https://doi.org/10.1016/j.colsurfa.2007.08.023

    CAS  Article  Google Scholar 

  53. 53.

    M. Yeganeh, M. Omidi, and T. Rabizadeh, Anti-corrosion Behavior of Epoxy Composite Coatings Containing Molybdate-Loaded Mesoporous Silica, Prog. Org. Coat., 2019, 126, p 18–27. https://doi.org/10.1016/j.porgcoat.2018.10.016

    CAS  Article  Google Scholar 

  54. 54.

    R. Naderi and M.M. Attar, Effect of Zinc-Free Phosphate-Based Anticorrosion Pigment on the Cathodic Disbondment of Epoxy-Polyamide Coating, Prog. Org. Coat., 2014, 77, p 830–835

    CAS  Article  Google Scholar 

  55. 55.

    B.P. Markhali, R. Naderi, M. Mahdavian, M. Sayebani, and S.Y. Arman, Electrochemical Impedance Spectroscopy and Electrochemical Noise Measurements as Tools to Evaluate Corrosion Inhibition of Azole Compounds on Stainless Steel in Acidic Media, Corros. Sci., 2013, 75, p 269–279

    CAS  Article  Google Scholar 

  56. 56.

    A. Dehghani, G. Bahlakeh, B. Ramezanzadeh, and M. Ramezanzadeh, A Combined Experimental and Theoretical Study of Green Corrosion Inhibition of Mild Steel in HCl Solution by Aqueous Citrullus lanatus Fruit (CLF) Extract, J. Mol. Liq., 2019, 279, p 603–624. https://doi.org/10.1016/j.molliq.2019.02.010

    CAS  Article  Google Scholar 

  57. 57.

    A. Dehghani, G. Bahlakeh, and B. Ramezanzadeh, A Detailed Electrochemical/Theoretical Exploration of the Aqueous Chinese Gooseberry Fruit Shell Extract as a Green and Cheap Corrosion Inhibitor for Mild Steel in Acidic Solution, J. Mol. Liq., 2019, 282, p 366–384. https://doi.org/10.1016/j.molliq.2019.03.011

    CAS  Article  Google Scholar 

  58. 58.

    S.S. Abd El Rehim, S.M. Sayyah, M.M. El-Deeb, S.M. Kamal, and R.E. Azooz, Adsorption and Corrosion Inhibitive Properties of P(2-aminobenzothiazole) on Mild Steel in Hydrochloric Acid Media, Int. J. Ind. Chem., 2016, https://doi.org/10.1007/s40090-015-0065-5

    Article  Google Scholar 

  59. 59.

    N.A. Odewunmi, S.A. Umoren, and Z.M. Gasem, Utilization of Watermelon Rind Extract as a Green Corrosion Inhibitor for Mild Steel in Acidic Media, J. Ind. Eng. Chem., 2015, 21, p 239–247. https://doi.org/10.1016/j.jiec.2014.02.030

    CAS  Article  Google Scholar 

  60. 60.

    A. Singh, K.R. Ansari, M.A. Quraishi, H. Lgaz, and Y. Lin, Synthesis and Investigation of Pyran Derivatives as Acidizing Corrosion Inhibitors for N80 Steel in Hydrochloric Acid: Theoretical and Experimental Approaches, J. Alloys Compd., 2018, 762, p 347–362. https://doi.org/10.1016/j.jallcom.2018.05.236

    CAS  Article  Google Scholar 

  61. 61.

    N. Asadi, M. Ramezanzadeha, G. Bahlakeh, and B. Ramezanzadeh, Utilizing Lemon Balm Extract as an Effective Green Corrosion Inhibitor for Mild Steel in 1 M HCl Solution: A Detailed Experimental, Molecular Dynamics, Monte Carlo and Quantum Mechanics Study, J. Taiwan Inst. Chem. Eng., 2019, 95, p 252–272. https://doi.org/10.1016/j.jtice.2018.07.011

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by Shahid Chamran University of Ahvaz with the Grant Numbers of SCU.EM98.3139 and SCU.EM98.236.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. R. Alavi Zaree.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yeganeh, M., Khosravi-Bigdeli, I., Eskandari, M. et al. Corrosion Inhibition of l-Methionine Amino Acid as a Green Corrosion Inhibitor for Stainless Steel in the H2SO4 Solution. J. of Materi Eng and Perform 29, 3983–3994 (2020). https://doi.org/10.1007/s11665-020-04890-y

Download citation

Keywords

  • 309S stainless steel
  • corrosion inhibitor
  • l-Methionine (LMT)