Center Clamp Forming of a Rectangular Cup with Bottom Edge Trimming Using a Continuous Carbon-Fiber-Reinforced Thermoplastic Sheet

Abstract

Center clamp forming method has been applied to avoid wrinkles in the press forming of a rectangular cup with bottom edge trimming using a continuous woven carbon fiber-reinforced plastic plate. Trimming of a bottom edge during forming is a convenient method to obtain smooth bottom without any other successive process. But it closes the die profile that may cause fiber wrinkle. By the center clamp forming compared with free forming, it is confirmed that this is one of the methods to achieve smooth top flat surface of the cup without wrinkles. Monitoring pressure using pressure sensors elucidated pressure application process during the press forming and cooling process. Difference of the pressure holding time in the cooling process was observed between the pressure on the side plate and that on the top flat plate. Sliding descent during the cooling under constant load indicated the solidification finishing time of the thermoplastic resin.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. 1.

    T. Gereke, O. Döbrich, M. Hübner, and C. Cherif, Experimental and Computational Composite Textile Reinforcement Forming: A Review, Compos. Part A, 2013, 4, p 1–10

    Article  Google Scholar 

  2. 2.

    S.V. Lomov, P.H. Boisse, E. Deluycker, F. Morestin, K. Vanclooster, D. Vandepitte, I. Verpoest, and A. Willems, Full-Field Strain Measurements in Textile Deformability Studies, Compos. Part A, 2008, 39, p 1232–1244

    Article  Google Scholar 

  3. 3.

    Q. Chen, P. Boisse, C.H. Park, A. Sauab, and J. Breard, Intra/Inter-ply Shear Behaviors of Continuous Fiber Reinforced Thermoplastic Composites in Thermoforming Processes, Compos. Struct., 2011, 93(7), p 1692–1703

    Article  Google Scholar 

  4. 4.

    M. Mchado, L. Murenu, M. Fischlschweiger, and Z. Major, Analysis of the Thermomechanical Shear Behavior of Woven-Reinforced Thermoplastic-Matrix Composites during Forming, Compos. Part A, 2016, 86, p 39–48

    Article  Google Scholar 

  5. 5.

    M. Hou and K. Friedrich, Stamp Forming of Continuous Carbon Fiber/Polypropylene Composites, Compos. Manuf., 1991, 2(1), p 1–9

    Article  Google Scholar 

  6. 6.

    M. Hou, K. Friedrich, and R. Scherer, Optimization of Stamp Forming of Thermoplastic Composite Bends, Compos. Struct., 1994, 27, p 157–167

    Article  Google Scholar 

  7. 7.

    J.M. Lee, B.M. Kim, B.J. Min, J.H. Park, and D.C. Ko, Formability of CFRTP Prepreg Considering Heat Transfer, Int. J. Precis. Eng. Manuf. Green Technol., 2017, 4(2), p 161–168

    Article  Google Scholar 

  8. 8.

    W. Lee, M.K. Um, J.H. Byun, P. Boisse, and J. Cao, Numerical Study on Thermo-Stamping of Woven Fabric Composites Based on Double-Dome Stretch Forming, Int. J. Mater. Form., 2010, 3, p S1217–S1227

    Article  Google Scholar 

  9. 9.

    S. Allaoui, P. Boisse, S. Chatel, N. Hamila, G. Hivet, D. Soulat, and E. Vidal-Salle, Experimental and Numerical Analyses of Textile Reinforcement Forming of a Tetrahedral Shape, Compos. Part A, 2011, 42, p 612–622

    Article  Google Scholar 

  10. 10.

    P. Wang, N. Hamila, and P. Boisse, Thermoforming Simulation of Multilayer Composites with Continuous Fibers and Thermoplastic Matrix, Compos. Part B, 2013, 52, p 127–136

    CAS  Article  Google Scholar 

  11. 11.

    Q. Zhang, J. Cai, and Q. Gao, Simulation and Experimental Study on Thermal Deep Drawing of Carbon Fiber Woven Composites, J. Mater. Process. Technol., 2014, 214, p 802–810

    CAS  Article  Google Scholar 

  12. 12.

    S.P. Haanappel, R.H.W. Ten Thije, U. Sachs, B. Rietman, and R. Akkerman, Formability Analyses of Uni-Directional and Textile Reinforced Thermoplastics, Compos. Part A, 2014, 56, p 80–92

    CAS  Article  Google Scholar 

  13. 13.

    H. Lessard, G. Lebrun, A. Benkaddour, and X.P. Pham, Influence of Process Parameters on the Thermostamping of a [0/90] 12 Carbon/Poly-Ether Ether Ketone Laminate, Compos. Part A, 2015, 70, p 59–68

    CAS  Article  Google Scholar 

  14. 14.

    A. Gherissi, F. Abbassi, A. Ammar, and A. Zghal, Numerical and Experimental Investigations on Deep Drawing of G1151 Carbon Fiber Woven Composites, Appl. Compos. Mater., 2016, 23, p 461–476

    CAS  Article  Google Scholar 

  15. 15.

    H. Xiong, A. Rusanov, N. Hamila, and P. Boisse, Consolidation Modelling for Thermoplastic Composites Forming Simulation, in ESAFORM (2016)

  16. 16.

    B.A. Behrens, A. Raatz, S. Hübner, C. Bonk, F. Bohe, C. Bruns, and M. Micke-Camuz, Automated Stamp Forming of Continuous Fiber Reinforced Thermoplastics for Complex Shell Geometries, Proc. CIRP, 2017, 66, p 113–118

    Article  Google Scholar 

  17. 17.

    P. Hallander, M. Akerno, C. Mattei, M. Petersson, and T. Nyman, An Experimental Study of Mechanisms Behind Wrinkle Development during Forming of Composite Laminates, Compos. Part A, 2013, 50, p 54–64

    CAS  Article  Google Scholar 

  18. 18.

    P. Harrison, R. Gomes, and N. Curado-Correia, Press Forming a 0/90 Cross-ply Advanced Thermoplastic Composite Using the Double-Dome Benchmark Geometry, Compos. Part A, 2013, 54, p 56–69

    CAS  Article  Google Scholar 

  19. 19.

    S. Chen, L.T. Harper, A. Endruweit, and N.A. Warrior, Formability Optimization of Fabric Preforms by Controlling Material Draw-In through In-Plane Constraints, Compos. Part A, 2015, 76, p 10–19

    CAS  Article  Google Scholar 

  20. 20.

    F.N. Nezami, T. Gereke, and C. Cherif, Manipulating Fabric Shear Deformation by Means of Membrane Tensioning—from Picture Frame Test to Generic Geometries, in SETEC 13 WUPPERTAL8th Technical Conference & Exhibition Novel Aspects in Composite Technologies: from Fiber to Lightweight Structures (2013), pp. 83–89

  21. 21.

    B. Vieille, W. Albouy, L. Chevalier, and L. Taleb, About the Influence of Stamping on Thermoplastic-Based Composites for Aeronautical Applications, Compos. Part B, 2013, 45(1), p 821–834

    CAS  Article  Google Scholar 

  22. 22.

    T. Yoneyama, D. Tatsuno, K. Kawamoto, and M. Okamoto, Effect of Press Parameter on the Forming Of Sphere-Conical Cup Using a Thermoplastic Sheet Reinforced with Carbon Fabric, Int. J. Autom. Technol., 2016, 10(3), p 381–391

    Article  Google Scholar 

  23. 23.

    D. Tatsuno, T. Yoneyama, K. Kawamoto, and M. Okamoto, Effect of Side Die Pressure and Adaptive Die Temperature Control in Press Forming of U-Beam Using Carbon Fiber Reinforced PA6 Sheet, J. Compos. Mater., 2017, 51(30), p 4273–4286

    CAS  Article  Google Scholar 

  24. 24.

    D. Tatsuno, T. Yoneyama, K. Kawamoto, and M. Okamoto, Effect of Cooling Rate on the Mechanical Strength of Carbon Fiber Reinforced Thermoplastic Sheets in Press Forming, J. Mater. Eng. Perform., 2017, 26(7), p 3482–3488

    CAS  Article  Google Scholar 

  25. 25.

    S. Isogawa, Y. Enomoto, H. Kobayashi, and S. Nasu, High Cycle Deep Drawing of PA6 Matrix Carbon Fiber Reinforced Thermoplastics by Servo-Driven Screw Press, Proc. Manuf., 2018, 15, p 1722–1729

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Tatsuno.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tatsuno, D., Yoneyama, T., Watanabe, R. et al. Center Clamp Forming of a Rectangular Cup with Bottom Edge Trimming Using a Continuous Carbon-Fiber-Reinforced Thermoplastic Sheet. J. of Materi Eng and Perform 29, 4075–4086 (2020). https://doi.org/10.1007/s11665-020-04886-8

Download citation

Keywords

  • carbon fiber-reinforced thermoplastic
  • composites
  • die
  • press forming
  • pressure