Effects of Co on Microstructure, Mechanical Properties, and Corrosion Resistance of Ti-Nb-Zr-Co Biological Alloys


Since the excellent solid solution strengthening of the β-stabilizer (Co), Ti-24Nb-4Zr-XCo (X = 0.5, 1, 1.5 at.%) alloys are prepared in arc melting, cold rolled, and heat treated followed by air cooled (at 823 K and 1023 K for 1.2 ks). The results indicate that micro-additions of Co strongly affect the mechanical properties and corrosion resistance of β titanium alloys. XRD and OM analyses reveal that the Co enhances the recovery and recrystallization process and strengthens the stability of β phase against β → ω phase transformation. Tensile test and Vickers hardness test indicate that the tensile strength and hardness heighten with increasing Co content, while relatively high plastic strain is retained. The Ti-24Nb-4Zr-1.5Co alloy performs highest strength (about 700 MPa), high plastic strain (19%), and low elastic modulus (75 GPa), making it a prospective implant for biomedical applications. Electrochemical corrosion test shows that the corrosion resistance weakens with an increase in Co content due to effect of the ω phase, but addition of 1.5 Co can inhibit the precipitation of ω phase and prevent the deterioration to some extent.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    P. Wang, M. Todai, and T. Nakano, ω-Phase Transformation and Lattice Modulation in Biomedical β-Phase Ti-Nb-Al Alloys, Journal of Alloys and Compounds, 2018, 766, p 511–516

    CAS  Google Scholar 

  2. 2.

    L.F. Huang, B. Grabowski, J. Zhang, M.J. Lai, C.C. Tasan, S. Sandlöbes, D. Raabe, and J. Neugebauer, From Electronic Structure to Phase Diagrams: A Bottom-Up Approach to Understand the Stability of Titanium-Transition Metal Alloys, Acta Materialia, 2016, 113, p 311–319

    CAS  Google Scholar 

  3. 3.

    X. Zhao, M. Niinomi, M. Nakai, and J. Hieda, Beta Type Ti–Mo Alloys with Changeable Young’s Modulus for Spinal Fixation Applications, Acta Biomaterialia, 2012, 8, p 1990–1997

    CAS  Google Scholar 

  4. 4.

    A. Devaraj, S. Nag, R. Srinivasan, R. Williams, S. Banerjee, R. Banerjee, and H. Fraser, Experimental Evidence of Concurrent Compositional and Structural Instabilities Leading to ω Precipitation in Titanium-Molybdenum Alloys, Acta Materialia, 2012, 60, p 596–609

    CAS  Google Scholar 

  5. 5.

    M. Niinomi, M. Nakai, and J. Hieda, Development of New Metallic Alloys for Biomedical Applications, Acta Biomaterialia, 2012, 8, p 3888–3903

    CAS  Google Scholar 

  6. 6.

    H.Y. Kim, Y. Ohmatsu, J.I. Kim, H. Hosoda, and S. Miyazaki, Mechanical Properties and Shape Memory Behavior of Ti-Mo-Ga Alloys, Materials Transactions, 2004, 45, p 1090–1095

    CAS  Google Scholar 

  7. 7.

    W.-F. Ho, S.-C. Wu, S.-K. Hsu, Y.-C. Li, and H.-C. Hsu, Effects of Molybdenum Content on the Structure and Mechanical Properties of As-Cast Ti–10Zr-Based Alloys for Biomedical Applications, Materials Science and Engineering: C, 2012, 32, p 517–522

    CAS  Google Scholar 

  8. 8.

    J. Málek, F. Hnilica, J. Veselý, B. Smola, K. Kolařík, J. Fojt, M. Vlach, and V. Kodetová, The Effect of Zr on the Microstructure and Properties of Ti-35Nb-XZr Alloy, Materials Science and Engineering: A, 2016, 675, p 1–10

    Google Scholar 

  9. 9.

    M.A.-H. Gepreel and M. Niinomi, Biocompatibility of Ti-Alloys for Long-Term Implantation, Journal of the Mechanical Behavior of Biomedical Materials, 2013, 20, p 407–415

    Google Scholar 

  10. 10.

    H.A. Zaman, S. Sharif, D.-W. Kim, M.H. Idris, M.A. Suhaimi, and Z. Tumurkhuyag, Machinability of Cobalt-based and Cobalt Chromium Molybdenum Alloys—A Review, Procedia Manufacturing, 2017, 11, p 563–570

    Google Scholar 

  11. 11.

    C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley, New York, 2003

    Google Scholar 

  12. 12.

    J. Chen, F. Ma, P. Liu, C. Wang, X. Liu, W. Li, and Q. Han, Effects of Nb on Superelasticity and Low Modulus Properties of Metastable β-Type Ti-Nb-Ta-Zr Biomedical Alloys, Journal of Materials Engineering and Performance, 2019, 28(3), p 1410–1418

    CAS  Google Scholar 

  13. 13.

    S.B. Gabriel, J.V.P. Panaino, I.D. Santos, L.S. Araujo, P.R. Mei, L.H. De Almeida, and C.A. Nunes, Characterization of a New Beta Titanium Alloy, Ti–12Mo–3Nb, for Biomedical Applications, Journal of Alloys and Compounds, 2012, 536, p S208–S210

    CAS  Google Scholar 

  14. 14.

    N.T. Oliveira, G. Aleixo, R. Caram, and A.C. Guastaldi, Development of Ti–Mo Alloys for Biomedical Applications: Microstructure and Electrochemical Characterization, Materials Science and Engineering: A, 2007, 452, p 727–731

    Google Scholar 

  15. 15.

    J. Ding, S. Yang, G. Liu, Q. Li, B. Zhu, M. Zhang, L. Zhou, C. Shang, Q. Zhan, and F. Wan, Recrystallization Nucleation in V-4Cr-4Ti Alloy, Journal of Alloys and Compounds, 2019, 777, p 663–672

    CAS  Google Scholar 

  16. 16.

    D. Gordin, T. Gloriant, G. Texier, I. Thibon, D. Ansel, J. Duval, and M. Nagel, Development of a β-Type Ti–12Mo–5Ta Alloy for Biomedical Applications: Cytocompatibility and Metallurgical Aspects, Journal of Materials Science: Materials in Medicine, 2004, 15, p 885–891

    CAS  Google Scholar 

  17. 17.

    D. Moffat and D. Larbalestier, The Compctition Between Martensite and Omega in Quenched Ti-Nb Alloys, Metallurgical Transactions A, 1988, 19, p 1677–1686

    Google Scholar 

  18. 18.

    É.S.N. Lopes, C.A.F. Salvador, D.R. Andrade, A. Cremasco, K.N. Campo, and R. Caram, Microstructure, Mechanical Properties, and Electrochemical Behavior of Ti-Nb-Fe Alloys Applied as Biomaterials, Metallurgical and Materials Transactions A, 2016, 47(6), p 3213–3226

    CAS  Google Scholar 

  19. 19.

    E.L. Pang, E.J. Pickering, S.I. Baik, D.N. Seidman, and N.G. Jones, The Effect of Zirconium on the Omega Phase in Ti-24Nb-[0–8] Zr (at.%) Alloys, Acta Materialia, 2018, 153, p 62–70

    CAS  Google Scholar 

  20. 20.

    H.Y. Kim, S. Hashimoto, J.I. Kim, T. Inamura, H. Hosoda, and S. Miyazaki, Effect of Ta Addition on Shape Memory Behavior of Ti–22Nb Alloy, Materials Science and Engineering: A, 2006, 417(1–2), p 120–128

    Google Scholar 

  21. 21.

    L. Nie, Y. Zhan, H. Liu, and C. Tang, Novel β-Type Zr–Mo–Ti Alloys for Biological Hard Tissue Replacements, Materials & Design, 2014, 53, p 8–12

    CAS  Google Scholar 

  22. 22.

    I. Mutlu, Synthesis and Characterization of Ti–Co Alloy Foam for Biomedical Applications, Transactions of Nonferrous Metals Society of China, 2016, 26(1), p 126–137

    CAS  Google Scholar 

  23. 23.

    W.C. Rodrigues, L.R. Broilo, L. Schaeffer, G. Knörnschild, and F.R.M. Espinoza, Powder Metallurgical Processing of Co–28% Cr–6% Mo for Dental Implants: Physical, Mechanical and Electrochemical Properties. Powder Technology, 2011, 206(3), p 233–238

    CAS  Google Scholar 

  24. 24.

    C. Kittel, P. McEuen, and P. McEuen, Introduction to Solid State Physics, Vol 8, Wiley, New York, 1996, p 105–130

    Google Scholar 

  25. 25.

    M. Calin, A. Gebert, A.C. Ghinea, P.F. Gostin, S. Abdi, C. Mickel, and J. Eckert, Designing Biocompatible Ti-Based Metallic Glasses for Implant Applications, Materials Science and Engineering: C, 2013, 33, p 875–883

    CAS  Google Scholar 

  26. 26.

    S. Abdi, S. Oswald, P.F. Gostin, A. Helth, J. Sort, M.D. Baro, M. Calin, L. Schultz, J. Eckert, and A. Gebert, Designing New Biocompatible Glass-Forming Ti75-xZr10NbxSi15 (x= 0, 15) Alloys: Corrosion, Passivity, and Apatite Formation, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2016, 104, p 27–38

    CAS  Google Scholar 

  27. 27.

    Q. Li, J. Li, G. Ma, X. Liu, and D. Pan, Influence of ω Phase Precipitation on Mechanical Performance and Corrosion Resistance of Ti–Nb–Zr Alloy, Materials & Design, 2016, 111, p 421–428

    CAS  Google Scholar 

  28. 28.

    Y. Lee and G. Welsch, Young’s Modulus and Damping of Ti-6Al-4 V Alloy as a Function of Heat Treatment and Oxygen Concentration, Materials Science and Engineering: A, 1990, 128, p 77–89

    Google Scholar 

  29. 29.

    S. Driver, N.G. Jones, H.J. Stone, D. Rugg, and M.A. Carpenter, On the Effect of Hydrogen on the Elastic Moduli and Acoustic Loss Behaviour of Ti-6Al-4 V, Philosophical Magazine, 2016, 96, p 2311–2327

    CAS  Google Scholar 

  30. 30.

    Y.L. Zhou, M. Niinomi, and T. Akahori, Effects of Ta Content on Young’s Modulus and Tensile Properties of Binary Ti–Ta Alloys for Biomedical Applications, Materials Science and Engineering: A, 2004, 371, p 283–290

    Google Scholar 

  31. 31.

    Q. Li, M. Niinomi, J. Hieda, M. Nakai, and K. Cho, Deformation-Induced ω Phase in Modified Ti–29Nb–13Ta–46 Zr Alloy by Cr Addition, Acta Biomaterialia, 2013, 9, p 8027–8035

    CAS  Google Scholar 

  32. 32.

    M. Niinomi, Recent Research and Development in Titanium Alloys for Biomedical Applications and Healthcare Goods, Science and Technology of Advanced Materials, 2003, 4, p 445

    CAS  Google Scholar 

  33. 33.

    M. Hamidi, W. Harun, M. Samykano, S. Ghani, Z. Ghazalli, F. Ahmad, and A.B. Sulong, A Review of Biocompatible Metal Injection Moulding Process Parameters for Biomedical Applications, Materials Science and Engineering: C, 2017, 78, p 1263–1276

    CAS  Google Scholar 

  34. 34.

    Q. Li, M. Niinomi, M. Nakai, Z. Cui, S. Zhu, and X. Yang, Effect of Zr on Super-Elasticity and Mechanical Properties of Ti–24 at% Nb–(0, 2, 4) at% Zr Alloy Subjected to Aging Treatment, Materials Science and Engineering: A, 2012, 536, p 197–206

    CAS  Google Scholar 

  35. 35.

    Y.L. Zhou, M. Niinomi, T. Akahori, M. Nakai, and H. Fukui, Comparison of Various Properties Between Titanium-Tantalum Alloy and Pure Titanium for Biomedical Applications, Materials Transactions, 2007, 48(3), p 380–384

    CAS  Google Scholar 

  36. 36.

    A. Robin and J. Meirelis, EIS Study of Ti–23Ta Alloy in Artificial Saliva, Corrosion Engineering, Science and Technology, 2009, 44, p 352–357

    CAS  Google Scholar 

  37. 37.

    F. Xie, X. He, S. Cao, X. Lu, and X. Qu, Structural Characterization and Electrochemical Behavior of a Laser-Sintered Porous Ti–10Mo Alloy, Corrosion Science, 2013, 67, p 217–224

    CAS  Google Scholar 

  38. 38.

    B.Y. Chang and S.M. Park, Electrochemical Impedance Spectroscopy, Annual Review of Analytical Chemistry, 2010, 3, p 207–229

    CAS  Google Scholar 

  39. 39.

    P.E. Moraes, R.J. Contieri, E.S. Lopes, A. Robin, and R. Caram, Effects of Sn Addition on the Microstructure, Mechanical Properties and Corrosion Behavior of Ti–Nb–Sn Alloys, Materials Characterization, 2014, 96, p 273–281

    CAS  Google Scholar 

  40. 40.

    M.V. Popa, I. Demetrescu, E. Vasilescu, P. Drob, A.S. Lopez, J. Mirza-Rosca, C. Vasilescu, and D. Ionita, Corrosion Susceptibility of Implant Materials Ti–5Al–4V and Ti–6Al–4Fe in Artificial Extra-cellular Fluids, Electrochimica Acta, 2004, 49, p 2113–2121

    CAS  Google Scholar 

  41. 41.

    G. Burstein, C. Liu, and R. Souto, The Effect of Temperature on the Nucleation of Corrosion Pits on Titanium in Ringer’s Physiological Solution, Biomaterials, 2005, 26, p 245–256

    CAS  Google Scholar 

  42. 42.

    T.H. Courtney and J. Wulff, Omega Phase Formation in Superconducting Ti Alloys, Materials Science and Engineering, 1969, 4(2-3), p 93–97

    CAS  Google Scholar 

Download references


The authors acknowledge financial support provided by National Natural Science Foundation of China (Grant No. 51771119), Natural Science Foundation of Shanghai (Grant No. 17ZR1419600), and Scientific and Technological Key Project of Shanghai (Grant Nos. 11441900500 and 11441900501).

Author information



Corresponding authors

Correspondence to Fengcang Ma or Ping Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Ma, F., Liu, P. et al. Effects of Co on Microstructure, Mechanical Properties, and Corrosion Resistance of Ti-Nb-Zr-Co Biological Alloys. J. of Materi Eng and Perform (2020). https://doi.org/10.1007/s11665-020-04874-y

Download citation


  • Corrosion
  • Mechanical properties
  • Microstructure
  • Recrystallization
  • Ti-Nb-Zr-Co