Micro Powder Hot Embossing of Aluminum Feedstock


The current research focuses on the shaping of aluminum feedstock by micro powder hot embossing. This method includes a mixture of powder with binder material for feedstock preparation. Then, shaping is accomplished by embossing, debinding and sintering. Micro powder hot embossing can be interested in the fabrication of parts when small series production is intended. The embossing step, to provide the designed configuration, is challenging and carried out using an elastomer die and uniaxial compaction. We evaluated the shaping process using aluminum feedstock and two geometries with similar aspect ratios (micro-channel half-flanges and micro-wall half-reservoirs). The micro-channel, half-flanges and half-reservoirs configurations were shaped using elastomer die; the micro-wall configuration was attained by the application of metallic die. For each die, the processing conditions (temperature, compaction and holding time) and shaping steps were selected to ensure the replicability and homogeneity of the green parts. The green parts were thermally debound and successfully sintered at a relatively high sintering temperature in a low-pressure atmosphere. The sintered parts retained their shapes and showed shrinkage.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Difference % = ((Weight Brown part − Theoretical weight) ÷ Theoretical weight) × 100

    Theoretical weight = vol. Powder in part × Density Powder

    vol. Powder in part = vol. Green part × Powder volume concentration in feedstock

    vol. Green part = Weight Green part ÷ Density Feedstock

    Density feedstock = (vol. Powder × Density Powder) + (vol. Binder × Density Binder).


  1. 1.

    M. Heckele and W.K. Schomburg, Review on Micro Molding of Thermoplastic Polymers, J. Micromech. Microeng., 2004, 14(3), p R1–R14

    CAS  Article  Google Scholar 

  2. 2.

    M. Koc and S. Mahabunphachai, Feasibility Investigations on a Novel Micro-manufacturing Process for Fabrication of Fuel Cell Bipolar Plates: Internal Pressure-Assisted Embossing of Micro-channels with In-Die Mechanical Bonding, J. Power Sources, 2007, 172(2), p 725–733

    CAS  Article  Google Scholar 

  3. 3.

    Q. Su, J. Xu, H. Yu, L. Shi, D.B. Shan, and B. Guo, Effect of Grain Size on Formability and Deformation Mechanism of High-Purity Aluminum During Micro-Embossing Process at Elevated Temperature, Adv. Eng. Mater., 2019, 21(10), p 1900690

    CAS  Article  Google Scholar 

  4. 4.

    X.W. Wang, J. Xu, C.J. Wang, A.J. Sanchez Egea, J.W. Li, C. Liu, Z.L. Wang, T.J. Zhang, B. Guo, and J. Cao, Bio-Inspired Functional Surface Fabricated by Electrically Assisted Micro-Embossing of AZ31 Magnesium Alloy, Materials, 2020, 13(2), p 412

    CAS  Article  Google Scholar 

  5. 5.

    G. Fu, S. Tor, N. Loh, and D. Hardt, Micro-Hot-Embossing of 316L Stainless Steel Micro-structures, Appl. Phys. A Mater. Sci. Process., 2009, 97(4), p 925–931

    CAS  Article  Google Scholar 

  6. 6.

    E.W. Sequeiros, O. Emadinia, T.F. Vieira, and M.F. Vieira, Development of Metal Powder Hot Embossing: A New Method for Micromanufacturing, Metals, 2020, 10(3), p 388

    Article  Google Scholar 

  7. 7.

    E.W. Sequeiros, V.C. Neto, M.T. Vieira, and M.F. Vieira, Hot Micro-embossing: Effect of Pressure on 316L Metal Parts, Powder Metall., 2014, 57(4), p 241–244

    CAS  Article  Google Scholar 

  8. 8.

    M. Sahli, C. Millot, J.C. Gelin, and T. Barrière, The Manufacturing and Replication of Microfluidic Mould Inserts by the Hot Embossing Process, J. Mater. Process. Technol., 2013, 213(6), p 913–925

    Article  Google Scholar 

  9. 9.

    M. Sahli, J.C. Gelin, and T. Barriere, Characterisation and Replication of Metallic Micro-fluidic Devices Using Three Different Powders Processed by Hot Embossing, Powder Technol., 2013, 246, p 284–302

    CAS  Article  Google Scholar 

  10. 10.

    Z.Y. Liu, N.H. Loh, S.B. Tor, K.A. Khor, Y. Murakoshi, R. Maeda, and T. Shimizu, Micro-powder Injection Molding, J. Mater. Process. Technol., 2002, 127(2), p 165–168. https://doi.org/10.1016/S0924-0136(02)00119-X

    CAS  Article  Google Scholar 

  11. 11.

    R.M. German, 1—Metal powder injection molding (MIM): key trends and markets A2—Heaney, Handbook of Metal Injection Molding, F. Donald, Ed., Woodhead Publishing, Sawston, 2012, p 1–25

    Google Scholar 

  12. 12.

    B. Nagarajan, Z.H. Hu, X. Song, W. Zhai, and J. Wei, Development of Micro Selective Laser Melting: The State of the Art and Future Perspectives, Engineering, 2019, 5(4), p 702–720

    CAS  Article  Google Scholar 

  13. 13.

    J.-P. Choi, H.-G. Lyu, W.-S. Lee, and J.-S. Lee, Investigation of the Rheological Behavior of 316L Stainless Steel Micro-nano Powder Feedstock for Micro Powder Injection Molding, Powder Technol., 2014, 261, p 201–209

    CAS  Article  Google Scholar 

  14. 14.

    S.S. Sidhu, S. Kumar, and A. Batish, Metal Matrix Composites for Thermal Management: A Review, Crit. Rev. Solid State Mater. Sci., 2016, 41(2), p 132–157

    CAS  Article  Google Scholar 

  15. 15.

    M. Jagannatham, P. Chandran, S. Sankaran, P. Haridoss, N. Nayan, and S.R. Bakshi, Tensile Properties of Carbon Nanotubes Reinforced Aluminum Matrix Composites: A Review, Carbon, 2020, 160, p 14–44

    CAS  Article  Google Scholar 

  16. 16.

    E.O. Olakanmi, R.F. Cochrane, and K.W. Dalgarno, A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties, Prog. Mater Sci., 2015, 74, p 401–477

    CAS  Article  Google Scholar 

  17. 17.

    M. Qian and G.B. Schaffer, Sintering of aluminium and its alloys, Sintering of Advanced Materials—Fundamentals and Processes, Z.Z. Fang, Ed., Woodhead Publishing, Sawston, 2010,

    Google Scholar 

  18. 18.

    Z.Y. Liu, T.B. Sercombe, and G.B. Schaffer, Metal injection moulding of aluminium alloy 6061 with tin, Powder Metall., 2008, 51(1), p 78–83

    CAS  Article  Google Scholar 

  19. 19.

    J.Q. Ni, K.Q. Han, M.H. Yu, Iop, Production of al-si alloy feedstocks using the solvent hot mixing method, in 2018 5th Global Conference on Polymer and Composite Materials (2018)

  20. 20.

    J.Q. Ni, M.H. Yu, and K.Q. Han, Debinding and Sintering of an Injection-Moulded Hypereutectic Al-Si Alloy, Materials, 2018, 11(5), p 807

    Article  Google Scholar 

  21. 21.

    O. Emadinia, E.W. Sequeiros, M.T. Vieira, and M.F. Vieira, Hot-Embossing Micro Parts Made of Aluminium and Aluminium Reinforced with Carbon Nanotube: Feedstock Preparation and Shaping, WorldPM, European Powder Metallurgy Association, Hamburg, 2016

    Google Scholar 

  22. 22.

    O. Emadinia, M.T. Vieira, and M.F. Vieira, Feedstocks of Aluminum and 316L Stainless Steel Powders for Micro Hot Embossing, Metals, 2018, 8(12), p 999

    CAS  Article  Google Scholar 

  23. 23.

    D.F. Heaney, Ed., Handbook of Metal Injection Molding, 1st ed., Woodhead Publishing, Sawston, 2012

    Google Scholar 

  24. 24.

    I.M. Meththananda, S. Parker, M.P. Patel, and M. Braden, The Relationship Between Shore Hardness of Elastomeric Dental Materials and Young’s Modulus, Dent. Mater., 2009, 25(8), p 956–959

    CAS  Article  Google Scholar 

  25. 25.

    I. Pinwill, M. Edirisinghe, and M. Bevis, Fabrication of Aluminium Components by Injection Moulding: Role of Carbon Residue Caused by Removal of the Organic Vehicle, J. Mater. Sci. Lett., 1991, 10(18), p 1107–1110

    CAS  Article  Google Scholar 

Download references


The authors would like to express their thanks to CEMUP (Centro de Materiais da Universidade do Porto) for assistance with SEM, and to IPN (Instituto Pedro Nunes) for IFM analyses.


This work was supported by the Fundação para a Ciência e a Tecnologia (FCT) [Grant Number PD-BD-52674 2014] and by FEDER funds through the program COMPETE-Programa Operacional Factores de Competitividade and by national funds through FCT [Project UID/EMS/00285/2019].

Author information




O.E. produced and characterized the mold assemblies and shaped components. O.E., M.T.V. and M.F.V. discussed the processes and results. All the authors participated in the design of the experiments and cooperated in writing this paper.

Corresponding author

Correspondence to Omid Emadinia.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Emadinia, O., Vieira, M.T. & Vieira, M.F. Micro Powder Hot Embossing of Aluminum Feedstock. J. of Materi Eng and Perform 29, 3395–3403 (2020). https://doi.org/10.1007/s11665-020-04869-9

Download citation


  • aluminum
  • feedstock
  • micro powder hot embossing
  • replicability
  • shaping