Understanding the Friction Behavior of Niobium Sheets during Forming Processes

Abstract

Niobium is a material widely used for particle accelerating facilities, such as cavities. These components are usually obtained through forming processes, and then to understand the friction behavior of niobium sheets during the forming process can be very useful. Therefore, in this work the friction behavior of niobium sheets under conditions similar to the ones faced in forming processes has been studied. Pin-on-disk tests have been carried out in both dry and lubricated conditions, and different values of contact force in the range of 2.5 and 20 N have been adopted to observe and understand the tribological behavior of niobium. The worn surfaces have been observed through a scanning electron microscope and EDX analyses to reveal the wear mechanisms. The experimental outcomes proved that niobium exhibits very high friction coefficient with a severe adhesive wear under dry condition, while a lower friction coefficient with a less severe wear mechanism has been observed when lubricant is adopted.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    J.H. Lim and J. Choi, Synthesis of Niobium Oxide Nanopowders by Field-Crystallization-Assisted Anodization, Curr. Appl. Phys. Curr. Appl. Phys., 2012, 12, p 155–159

    Article  Google Scholar 

  2. 2.

    S. Yang, H. Habazaki, T. Fujii, Y. Aoki, P. Skeldon, and G. Thompson, Control of Morphology and Surface Wettability of Anodic Niobium Oxide Microcones Formed in Hot Phosphate-Glycerol Electrolytes, Electrochim. Acta Electrochim. Acta, 2011, 56, p 7446–7453

    CAS  Article  Google Scholar 

  3. 3.

    T. Arunnellaiappan, S. Arun, S. Hariprasad, S. Gowtham, B. Ravisankar, and N. Rameshbabu, Fabrication of Corrosion Resistant Hydrophobic Ceramic Nanocomposite Coatings on PEO Treated AA7075, Ceram. Int., 2018, 44(1), p 874–884. https://doi.org/10.1016/j.ceramint.2017.10.014

    CAS  Article  Google Scholar 

  4. 4.

    D. Quintero, M.A. Gómez, W.S. Araujo, F. Echeverría, and J.A. Calderón, Influence of the Electrical Parameters of the Anodizing PEO Process on Wear and Corrosion Resistance of Niobium, Surf. Coat. Technol., 2019, 380, p 125067. https://doi.org/10.1016/j.surfcoat.2019.125067

    CAS  Article  Google Scholar 

  5. 5.

    T. Padamsee, H. Knobloch, and J. Hays, RF Superconductivity for Accelerators, 2nd ed., Wiley, New York, 2008

    Google Scholar 

  6. 6.

    A. Chandra, M. Sumption, and G. Frankel, On the Mechanism of Niobium Electropolishing, J. Electrochem. Soc., 2012, 159, p C485–C491

    CAS  Article  Google Scholar 

  7. 7.

    K. Win, M. Sumption, and G. Frankel, Smoothening of Niobium by Electropolishing, J. Appl. Electrochem., 2013, 43, p 829

    Article  Google Scholar 

  8. 8.

    M. Olsson, H. Persson, V. Bushlya, and J.-E. Ståhl, Surface Roughness and Sub-Surface Deformation Measurements in Machining of Niobium, Proc. CIRP, 2018, 71, p 413–417

    Article  Google Scholar 

  9. 9.

    G. Myneni, Review of Ingot Niobium as a Material for Superconducting Radio Frequency Accelerating Cavities, Nucl. Instrum. Methods Phys. Res. A, 2015, 774, p 133–150

    Article  Google Scholar 

  10. 10.

    H.R.Z. Sandim, H.H. Bernardi, B. Verlinden, and D. Raabe, Equal Channel Angular Extrusion of Niobium Single Crystals, Mater. Sci. Eng. A, 2007, 467(1), p 44–52. https://doi.org/10.1016/j.msea.2007.02.086

    CAS  Article  Google Scholar 

  11. 11.

    L. Zhu, M. Seefeldt, and B. Verlinden, Three Nb Single Crystals Processed by Equal-Channel Angular Pressing—Part I: Dislocation Substructure, Acta Mater., 2013, 61(12), p 4490–4503. https://doi.org/10.1016/j.actamat.2013.04.018

    CAS  Article  Google Scholar 

  12. 12.

    L. Zhu, M. Seefeldt, and B. Verlinden, Three Nb Single Crystals Processed by Equal-Channel Angular Pressing—Part II: Mesoscopic Bands, Acta Mater., 2013, 61(12), p 4504–4511. https://doi.org/10.1016/j.actamat.2013.04.019

    CAS  Article  Google Scholar 

  13. 13.

    Z. Pan, F. Xu, S.N. Mathaudhu, L.J. Kecskes, W.H. Yin, X.Y. Zhang, K.T. Hartwig, and Q. Wei, Microstructural Evolution and Mechanical Properties of Niobium Processed by Equal Channel Angular Extrusion up to 24 Passes, Acta Mater., 2012, 60(5), p 2310–2323. https://doi.org/10.1016/j.actamat.2011.12.019

    CAS  Article  Google Scholar 

  14. 14.

    Q. Wei, T. Jiao, S.N. Mathaudhu, E. Ma, K.T. Hartwig, and K.T. Ramesh, Microstructure and Mechanical Properties of Tantalum after Equal Channel Angular Extrusion (ECAE), Mater. Sci. Eng. A, 2003, 358(1), p 266–272. https://doi.org/10.1016/S0921-5093(03)00305-8

    CAS  Article  Google Scholar 

  15. 15.

    Y. Wang, S. Goel, J.L. Sun, Y.M. Zhu, H. Yuan, and J.T. Wang, The Effect of Temperature on Activation Volume of Ultrafine Grained Tantalum, Int. J. Refract. Met. Hard Mater., 2017, 71, p 232–238

    Article  Google Scholar 

  16. 16.

    Y.R. Kolobov, B. Kieback, K.V. Ivanov, T. Weissgaerber, N.V. Girsova, Y.I. Pochivalov, G.P. Grabovetskaya, M.B. Ivanov, V.U. Kazyhanov, and I.V. Alexandrov, The Structure and Microhardness Evolution in Submicrocrystalline Molybdenum Processed by Severe Plastic Deformation Followed by Annealing, Int. J. Refract. Met. Hard Mater., 2003, 21(1), p 69–73. https://doi.org/10.1016/S0263-4368(03)00002-7

    CAS  Article  Google Scholar 

  17. 17.

    Kneisel P. et al., in AIP Conference Proceedings. Proceedings of the International Niobium Workshop on Single Crystal-Large Grain Niobium Technology (Araxá, Brazil, 2006), p. 84

  18. 18.

    A. Ermakov, I. Jelezov, X. Singer, W. Singer, G.B. Viswanathan, V. Levit, H.L. Fraser, H. Wen, and M. Spiwek, Physical Properties and Structure of Large Grain/Single Crystal Niobium for Superconducting RF Cavities, J. Phys. Conf. Ser., 2008, 97, p 1

    Article  Google Scholar 

  19. 19.

    N.W. Khun, G.S. Frankel, and M. Sumption, Effects of Normal Load, Sliding Speed, and Surface Roughness on Tribological Properties of Niobium under Dry and Wet Conditions, Tribol. Trans., 2014, 57(5), p 944–954. https://doi.org/10.1080/10402004.2014.927546

    CAS  Article  Google Scholar 

  20. 20.

    W. Singer, A. Brinkmann, D. Proch, and X. Singer, Quality Requirements and Control of High Purity Niobium for Superconducting RF Cavities, Phys. C Supercond., 2003, 386, p 379–384

    CAS  Article  Google Scholar 

  21. 21.

    F. Furuta, K. Saito, and T. Konomi, in IPAC 20101st International Part. Accelerator Conference. High Field Q-Slope Problem in End Group Cavities (2010), p. 3347–3349

  22. 22.

    T. Kubo, Y. Ajima, H. Inoue, K. Umemori, Y. Watanabe, and M. Yamanaka, in In-House Production of a Large-Grain Single-Cell Cavity at Cavity Fabrication Facility and Results of Performance Tests (2014), p. 2519–2521.

  23. 23.

    T.M. Wang, X.J. Wang, W.J. Wang, and J. Shi, Tribological Study of Nitrogen Implanted Niobium, Wear, 1996, 196(1), p 197–201. https://doi.org/10.1016/0043-1648(95)06905-4

    CAS  Article  Google Scholar 

  24. 24.

    S.F. Brunatto, A.N. Allenstein, C.L.M. Allenstein, and A.J.A. Buschinelli, Cavitation Erosion Behaviour of Niobium, Wear, 2012, 274–275, p 220–228. https://doi.org/10.1016/j.wear.2011.09.001

    CAS  Article  Google Scholar 

  25. 25.

    P.J. Blau, Friction Science and Technology, ed by Marcel Dekker (New York, 1996).

  26. 26.

    S.M. Mahdavian, Y.W. Mai, and B. Cotterel, Friction, Metallic Transfer and Debris Analysis of Sliding Surfaces, Wear, 1982, 82(2), p 221–232. https://doi.org/10.1016/0043-1648(82)90294-0

    Article  Google Scholar 

  27. 27.

    M. Clerico and V. Patierno, Sliding Wear of Polymeric Composites, Wear, 1979, 53(2), p 279–301. https://doi.org/10.1016/0043-1648(79)90083-8

    CAS  Article  Google Scholar 

  28. 28.

    A.A. Carvalho, S. Barrière, J. Brachet, B. Bulat, R. Calaga, E. Cano-Pleite, O. Capatina, T. Capelli, A. Dallocchio, M. Garlaschè, L. Giordanino, R. Leuxe, M. Narduzzi, and L. Prever-Loiri, Advanced Design of Tooling for Sheet-Metal Forming through Numerical Simulations in the Scope of SRF Crab Cavities at CERN (2019), p. 100008. https://doi.org/10.1063/1.5112641

  29. 29.

    V. Palmieri, F. Stivanello, S.Y. Stark, I. Lnl, L. Padua, C. Roncolato, and M. Valentino, in 10th Working RF Superconducors. Besides the Standard Niobium Bath Chemical Polishing (2001), p. 408–412

  30. 30.

    ISO 42871997-Geometrical Product Specifications (GPS)—Surface Texture Profile Method-Terms, Definitions and Surface Texture Parameters n.d.

  31. 31.

    M. Durante, L. Boccarusso, C. Velotti, A. Astarita, A. Squillace, and L. Carrino, Characterization of Ti-6Al-4V Tribopairs: Effect of Thermal Oxidation Treatment, J. Mater. Eng. Perform., 2017, 26(2), p 571–583. https://doi.org/10.1007/s11665-016-2477-6

    CAS  Article  Google Scholar 

  32. 32.

    T.R. Bieler, N.T. Wright, F. Pourboghrat, C. Compton, K.T. Hartwig, D. Baars, A. Zamiri, S. Chandrasekaran, P. Darbandi, H. Jiang, E. Skoug, S. Balachandran, G.E. Ice, and W. Liu, Physical and Mechanical Metallurgy of High Purity Nb for Accelerator Cavities, Phys. Rev. ST Accel. Beams, 2010, 13(3), p 31002. https://doi.org/10.1103/physrevstab.13.031002

    Article  Google Scholar 

  33. 33.

    E.K. Ampaw, E.K. Arthur, A.Y. Badmos, J.D. Obayemi, O.O. Adewoye, A.R. Adetunji, S.O.O. Olusunle, and W.O. Soboyejo, Sliding Wear Characteristics of Pack Cyanided Ductile Iron, J. Mater. Eng. Perform., 2019, 28(12), p 7227–7240. https://doi.org/10.1007/s11665-019-04471-8

    CAS  Article  Google Scholar 

  34. 34.

    N.W. Khun and E. Liu, Tribological Behavior of Polyurethane Immersed in Acidic Solution, Tribol. Trans., 2012, 55(4), p 401–408. https://doi.org/10.1080/10402004.2012.656881

    CAS  Article  Google Scholar 

  35. 35.

    N.W. Khun, H. Zhang, J.L. Yang, and E. Liu, Tribological Performance of Silicone Composite Coatings Filled with Wax-Containing Microcapsules, Wear, 2012, 296(1), p 575–582. https://doi.org/10.1016/j.wear.2012.07.029

    CAS  Article  Google Scholar 

  36. 36.

    N.W. Khun, H. Zhang, J. Yang, and E. Liu, Mechanical and Tribological Properties of Epoxy Matrix Composites Modified with Microencapsulated Mixture of Wax Lubricant and Multi-Walled Carbon Nanotubes, Friction, 2013, 1(4), p 341–349

    CAS  Article  Google Scholar 

  37. 37.

    F. Svahn, Å. Kassman-Rudolphi, and E. Wallén, The Influence of Surface Roughness on Friction and Wear of Machine Element Coatings, Wear, 2003, 254(11), p 1092–1098. https://doi.org/10.1016/S0043-1648(03)00341-7

    CAS  Article  Google Scholar 

  38. 38.

    P.L. Menezes, S. Kishore, and V. Kailas, Influence of Surface Texture and Roughness Parameters on Friction and Transfer Layer Formation during Sliding of Aluminium Pin on Steel Plate, Wear, 2009, 267(9), p 1534–1549. https://doi.org/10.1016/j.wear.2009.06.003

    CAS  Article  Google Scholar 

  39. 39.

    T.S. Barrett, G.W. Stachowiak, and A.W. Batchelor, Effect of Roughness and Sliding Speed on the Wear and Friction of Ultra-High Molecular Weight Polyethylene, Wear, 1992, 153(2), p 331–350. https://doi.org/10.1016/0043-1648(92)90174-7

    CAS  Article  Google Scholar 

  40. 40.

    E. Ceretti, A. Fiorentino, and C. Giardini, Process Parameters Influence on Friction Coefficient in Sheet Forming Operations, Int. J. Mater. Form., 2008, 1, p 1219–1222

    Article  Google Scholar 

  41. 41.

    T. Kasai, X.Y. Fu, D.A. Rigney, and A.L. Zharin, Applications of a Non-Contacting Kelvin Probe during Sliding, Wear, 1999, 225–229, p 1186–1204. https://doi.org/10.1016/S0043-1648(99)00057-5

    Article  Google Scholar 

  42. 42.

    L. Vitos, K. Larsson, B. Johansson, M. Hanson, and S. Hogmark, An Atomistic Approach to the Initiation Mechanism of Galling, Comput. Mater. Sci., 2006, 37, p 193–197

    CAS  Article  Google Scholar 

  43. 43.

    U. Wiklund and I.M. Hutchings, Investigation of Surface Treatments for Galling Protection of Titanium Alloys, Wear, 2001, 250, p 1034–1041

    Article  Google Scholar 

  44. 44.

    J.N. Anno, J.A. Walowit, and C.M. Allen, Microasperity Lubrication, J. Lubr. Technol., 1968, 90(2), p 351–355. https://doi.org/10.1115/1.3601568

    Article  Google Scholar 

Download references

Acknowledgments

The authors want to acknowledge the CERN HL-LHC Work Package 4, under which framework this experimental campaign has been enabled (https://hilumilhc.web.cern.ch/wp/wp4-crab-cavities-rf). The authors want also to acknowledge the Agreement KN3012/GEN between CERN and University of Naples “Federico II”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antonello Astarita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Silvestri, A.T., Astarita, A., Boccarusso, L. et al. Understanding the Friction Behavior of Niobium Sheets during Forming Processes. J. of Materi Eng and Perform 29, 3055–3066 (2020). https://doi.org/10.1007/s11665-020-04868-w

Download citation

Keywords

  • friction
  • forming processes
  • niobium
  • pin-on-disk
  • wear