Skip to main content
Log in

Microstructure and Mechanical Properties of Millimeter WC Particle-Reinforced High-Chromium Cast Iron Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

WC particle/HCCI composites were prepared using liquid-phase sintering technology. In this study, millimeter WC particles were used to ensure that minimal WC particle performance was compromised during the preparation process. Moreover, with the aim of controlling the evolution of microstructures and secondary carbide precipitation in the matrix, different heat treatment methods were adopted in the manufacturing process. The microstructures of the composites were investigated via SEM, XRD, EPMA and TEM. The results showed that perfect metallurgical bonding was formed between the LCS and the WC/HCCI composites, and the width of the diffusion layer was 120 to 129 µm after heat treatment. A large number of secondary carbides precipitated in the matrix during heat treatment, and martensite formation occurred in the matrix during the subsequent cooling process, which effectively increased the microhardness of the matrix. The impact toughness of the LCS-toughened composites after heat treatment was 1.6 times that of the WC/HCCI composites, and the shear strength was 5 times that of the as-cast composites. The wear resistance of the composites under quenching at 950 °C and tempering at 220 °C was 5 times that of the as-cast composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Khoshhal, M. Soltanieh, and M.A. Boutorabi, Formation Mechanism and Synthesis of Fe-TiC/Al2O3 Composite by Ilmenite, Aluminum and Graphite, Int. J. Refract. Met. Hard Mater., 2014, 45, p 53–57

    Article  CAS  Google Scholar 

  2. J. Ru, H. He, Y. Jiang, R. Zhou, and Y. Hua, Wettability and Interaction Mechanism for Ni-Modified ZTA Particles Reinforced Iron Matrix Composites, J. Alloys Compd., 2019, 786, p 321–329

    Article  CAS  Google Scholar 

  3. J. Nurminen, J. NäKki, and P. Vuoristo, Microstructure and Properties of Hard and Wear Resistant MMC Coatings Deposited by Laser Cladding, Int. J. Refract. Met. Hard Mater., 2009, 27, p 472–478

    Article  CAS  Google Scholar 

  4. R. Zhou, Y. Jiang, and D. Lu, The Effect of Volume Fraction of WC Particles on Erosion Resistance of WC Reinforced Iron Matrix Surface Composites, Wear, 2003, 255, p 134–138

    Article  CAS  Google Scholar 

  5. J. Ru, Y. Jiang, R. Zhou, J. Feng, Y. Hua, and Q. Yang, Preparation of Ni-Encapsulated ZTA Particles as Precursors to Reinforce Iron-Based Composites, Adv. Eng. Mater., 2017, 19, p 1–11

    Article  Google Scholar 

  6. C.M. Fernandes, L.M. Vilhena, C.M.S. Pinho, F.J. Oliveira, E. Soares, J. Sacramento, and A.M.R. Senos, Mechanical Characterization of WC-10 wt% AISI, 304 Cemented Carbides, Mater. Sci. Eng. A, 2014, 618, p 629–636

    Article  CAS  Google Scholar 

  7. J.I. Verdeja, J. Asensio, and J.A. Pero-Sanz, Texture, Formability, Lamellar Tearing and HIC Susceptibility of Ferritic and Low-Carbon HSLA Steels, Mater. Charact., 2003, 50, p 81–86

    Article  CAS  Google Scholar 

  8. S.H.M. Anijdan, A. Bahrami, N. Varahram, and P. Davami, Effects of Tungsten on Erosion-Corrosion Behavior of High Chromium White Cast Iron, Mater. Sci. Eng. A, 2007, 454–455, p 623–628

    Article  Google Scholar 

  9. E. Ghasali, T. Ebadzadeh, M. Alizadeh, and M. Razavi, Spark Plasma Sintering of WC-Based Cermets/Titanium and Vanadium Added Composites: A Comparative Study on the Microstructure and Mechanical Properties, Ceram. Int., 2018, 44, p 10646–10656

    Article  CAS  Google Scholar 

  10. A.J. Cavaleiro, C.M. Fernandes, A.R. Farinha, C.V. Gestel, J. Jhabvala, E. Boillat, A.M.R. Senos, and M.T. Viaira, The Role of Nanocrystalline Binder Metallic Coating into WC After Additive Manufacturing, Appl. Surf. Sci., 2017, 427, p 131–138

    Article  Google Scholar 

  11. Z. Li, Y. Jiang, R. Zhou, F. Gao, Q. Shan, and J. Tan, Thermal Fatigue Mechanism of WC Particles Reinforced Steel Substrate Surface Composite at Different Thermal Shock Temperatures, J. Alloys Compd., 2014, 596, p 48–54

    Article  CAS  Google Scholar 

  12. N. Espallargas, J. Berget, J.M. Guilemany, A.V. Benedetti, and P.H. Suegama, Cr3C2 –NiCr and WC–Ni Thermal Spray Coatings as Alternatives to Hard Chromium for Erosion–Corrosion Resistance, Surf. Coat. Technol., 2008, 202, p 1405–1417

    Article  CAS  Google Scholar 

  13. H. Peng, H. Guo, J. He, and S. Gong, Oxidation and Diffusion Barrier Behaviors of Double-Layer NiCoCrAlY Coatings Produced by Plasma Activated EB-PVD, Surf. Coat. Technol., 2011, 205, p 4658–4664

    Article  CAS  Google Scholar 

  14. A. Genç, E. Ayas, M.L. Öveçoğlu, and S. Turan, Fabrication of In Situ Ni(W)-WC Nano Composites via Mechanical Alloying and Spark Plasma Sintering, J. Alloys Compd., 2012, 542, p 97–104

    Article  Google Scholar 

  15. C.M. Fernandes, A.M.R. Senos, and M.T. Vieira, Sintering of Tungsten Carbide Particles Sputter-Deposited with Stainless Steel, Int. J. Refract. Met. Hard Mater., 2003, 21, p 147–154

    Article  CAS  Google Scholar 

  16. C.M. Fernandes, A.M.R. Senos, and M.T. Vieira, Control of Eta Carbide Formation in Tungsten Carbide Powders Sputter-Coated with (Fe/Ni/Cr), Int. J. Refract. Met. Hard Mater., 2007, 25, p 310–317

    Article  CAS  Google Scholar 

  17. S.H. Chang, M.H. Chang, and K.T. Huang, Study on the Sintered Characteristics and Properties of Nanostructured WC-15 wt%(Fe-Ni-Co) and WC-15 wt% Co Hard Metal Alloys, J. Alloys Compd., 2015, 649, p 89–95

    Article  CAS  Google Scholar 

  18. S.H. Chang and P.Y. Chang, Study on the Mechanical Properties, Microstructure and Corrosion Behaviors of Nano-WC-Co-Ni-Fe Hard Materials Through HIP and Hot-Press Sintering Processes, Mater. Sci. Eng. A, 2014, 618, p 56–62

    Article  CAS  Google Scholar 

  19. T. Yang, Q. Wei, Q. Yao, Y. Wang, Y. Xie, J. Luo, and Z. Yu, Microstructure Evolution of Thermal Spray WC-Co Interlayer During Hot Filament Chemical Vapor Deposition of Diamond Thin Films, J. Alloys Compd., 2015, 639, p 659–668

    Article  CAS  Google Scholar 

  20. M. Tarraste, J. Kübarsepp, K. Juhani, A. Mere, M. Koines, M. Viljus, and B. Maaten, Ferritic Chromium Steel as Binder Metal for WC Cemented Carbides, Int. J. Refract. Met. Hard Mater., 2018, 73, p 183–191

    Article  CAS  Google Scholar 

  21. D. Gu and W. Meiners, Microstructure Characteristics and Formation Mechanisms of In Situ WC Cemented Carbide Based Hardmetals Prepared by Selective Laser Melting, Mater. Sci. Eng. A, 2010, 527, p 7585–7592

    Article  Google Scholar 

  22. Y. Li, M. Gong, K. Wang, P. Li, Y. Xu, and W. Tong, Diffusion Behavior and Mechanical Properties of High Chromium Cast Iron/Low Carbon Steel Bimetal, Mater. Sci. Eng. A, 2018, 718, p 260–266

    Article  CAS  Google Scholar 

  23. L. Zhang and N.P. Padture, Inhomogeneous Oxidation of ZrB2-SiC Ultra-high-temperature Ceramic Particulate Composites and Its Mitigation, Acta Mater., 2017, 129, p 138–148

    Article  CAS  Google Scholar 

  24. M. Zhou, Y. Jiang, and Y. Sui, Microstructure and Properties of Interfacial Transition Zone in ZTA Particle-Reinforced Iron Composites, Appl. Phys., 2019, 125, p 110–120

    Article  Google Scholar 

  25. J. Wang, L. Li, and W. Tao, Crack Initiation and Propagation Behavior of WC Particles Reinforced Fe-Based Metal Matrix Composite Produced by Laser Melting Deposition, Opt. Laser Technol., 2016, 82, p 170–182

    Article  CAS  Google Scholar 

  26. B. Xiong, C. Cai, H. Wan, and B. Lu, Fabrication of High Chromium Cast Iron and Medium Carbon Steel Bimetal by Liquid-Solid Casting in Electromagnetic Induction Field, Mater. Des., 2011, 32, p 2978–2982

    Article  CAS  Google Scholar 

  27. A. Bedoola-Jacuinde, F.V. Guerra, I. Mejĺa, and J. Zuno-Silva, Abrasive Wear of V-Nb-Ti Alloyed High-Chromium White Irons, Wear, 2015, 332–333, p 1006–1011

    Article  Google Scholar 

  28. E. Cortés-Carrillo, A. Bedolla-Jacuinde, I. Mejía, C.M. Zepeda, J. Zuno-Silva, and F.V. Guerra-Lopez, Effects of Tungsten on the Microstructure and on the Abrasive Wear Behavior of a High-Chromium White Iron, Wear, 2017, 376–377, p 77–85

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (U1810109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Tong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Li, X., Li, Y. et al. Microstructure and Mechanical Properties of Millimeter WC Particle-Reinforced High-Chromium Cast Iron Composites. J. of Materi Eng and Perform 28, 7816–7827 (2019). https://doi.org/10.1007/s11665-019-04491-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04491-4

Keywords

Navigation