Skip to main content

Advertisement

Log in

Large-Scale Molecular Dynamics Simulation Studies on Deformation of Ni Nanowires: Surface Profile, Defects and Stacking Fault Width Analysis

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

We report large-scale molecular dynamics simulation deformation studies of Ni nanowire (NW) of size 100 Å (x) × 1000 Å (y) × 100 Å (z) comprising of 925,965 atoms. Surface and internal defects are introduced to study their effect on the surface profile, strength, fracture behavior and deformation mechanisms. Tensile tests have been carried out at a temperature of 10 K and at a strain rate of 108 s−1. Periodic boundary condition is applied along the loading direction (y). Peak strength of 23 GPa is observed in the perfect NW, and the strength decreases with defects. The surface profiles of the deformed NWs show intrusion and extrusion regions corresponding to slip steps with wider valleys in the defect NWs. Several intrinsic and extrinsic parallel stacking faults (SFs) are generated after yielding by slip occurring on {111} planes. The calculated SF widths are in the range of 0.85-2.57 nm in the perfect NW. The dislocations are mainly Shockley partial dislocations of type 1/6 \(\left\langle {112} \right\rangle\),  and Schmid’s factor (m) obtained is 0.471. Twinning dislocation of types 1/9 \(\left\langle {221} \right\rangle\) and 1/18 \(\left\langle {172} \right\rangle\) is also observed in the SFs. The density of Shockley partial dislocations is observed to be the maximum in all the NWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. C. Peng, Y. Zhong, Y. Lu, S. Narayanan, T. Zhu, and J. Lou, Strain Rate Dependent Mechanical Properties in Single Crystal Nickel Nanowires, Appl. Phys. Letts, 2013, 102, p 83102

    Article  Google Scholar 

  2. T. Zhu, J. Li, A. Samanta, A. Leach, and K. Gall, Temperature and Strain-Rate Dependence of Surface Dislocation Nucleation, Phys. Rev. Lett., 2008, 100(2), p 1–4

    Google Scholar 

  3. P. Gupta, S. Pal, and N. Yedla, Molecular Dynamics Based Cohesive Zone Modeling of Al (metal)-Cu 50 Zr 50 (Metallic Glass) Interfacial Mechanical Behavior and Investigation of Dissipative Mechanisms, Mater. Des., 2016, 105, p 41–50

    Article  CAS  Google Scholar 

  4. G.P. Potirniche, M.F. Horstemeyer, G.J. Wagner, and P.M. Gullett, A Molecular Dynamics Study of Void Growth and Coalescence in Single Crystal Nickel, Int. J. Plast, 2006, 22(2), p 257–278

    Article  CAS  Google Scholar 

  5. D.K. Das and M.M. Ghosh, On Mechanical Properties of Graphene Sheet Estimated Using Molecular Dynamics Simulations, J. Mater. Eng. Perform., 2017, 26(9), p 4522–4532

    Article  CAS  Google Scholar 

  6. N. Yedla, P. Gupta, T.Y. Ng, and K.R. Geethalakshmi, Effect of Loading Direction and Defects on the Strength and Fracture Behavior of Biphenylene Based Graphene Monolayer, Mater. Chem. Phys., 2017, 202, p 127–135

    Article  CAS  Google Scholar 

  7. M. Grujicic, R. Yavari, J.S. Snipes, S. Ramaswami, T. Jiao, and R.J. Clifton, Experimental and Computational Study of the Shearing Resistance of Polyurea at High Pressures and High Strain Rates, J. Mater. Eng. Perform., 2015, 24(2), p 778–798

    Article  CAS  Google Scholar 

  8. H.S. Park, K. Gall, and J.A. Zimmerman, Deformation of FCC Nanowires by Twinning and Slip, J. Mech. Phys. Solids, 2006, 54(9), p 1862–1881. https://doi.org/10.1016/j.jmps.2006.03.006

    Article  CAS  Google Scholar 

  9. A. Movahedi-Rad and R. Alizadeh, Dependence of Strain Rate Sensitivity on the Slip System: A Molecular Dynamics Simulation, J. Mater. Eng. Perform., 2017, 26(11), p 5173–5179

    Article  CAS  Google Scholar 

  10. M.M. Ghosh, S. Ghosh, and S.K. Pabi, Effects of Particle Shape and Fluid Temperature on Heat-Transfer Characteristics of Nanofluids, J. Mater. Eng. Perform., 2013, 22(6), p 1525–1529

    Article  CAS  Google Scholar 

  11. H.Y. Song, J.J. Xu, Y.G. Zhang, S. Li, D.H. Wang, and Y.L. Li, Molecular Dynamics Study of Deformation Behavior of Crystalline Cu/amorphous Cu50Zr50 Nanolaminates, Mater. Des., 2017, 127, p 173–182

    Article  CAS  Google Scholar 

  12. F. Baras, V. Turlo, and O. Politano, Dissolution at Interfaces in Layered Solid-Liquid Thin Films: A Key Step in Joining Process, J. Mater. Eng. Perform., 2016, 25(8), p 3270–3274

    Article  CAS  Google Scholar 

  13. P.S. Branı, Large Deformation and Amorphization of Ni Nanowires under Uniaxial Strain—A MD Study - Branicio_Rino _ Phys Rev B 62 (2000) 16950, 2000, 62(24), p 950–955.

  14. Y.H. Wen, Z.Z. Zhu, G.F. Shao, and R.Z. Zhu, The Uniaxial Tensile Deformation of Ni Nanowire: Atomic-Scale Computer Simulations, Phys. E Low-Dimens. Syst. Nanostruct., 2005, 27(1–2), p 113–120

    Article  CAS  Google Scholar 

  15. Y.H. Wen, Z.Z. Zhu, and R.Z. Zhu, Molecular Dynamics Study of the Mechanical Behavior of Nickel Nanowire: Strain Rate Effects, Comput. Mater. Sci., 2008, 41(4), p 553–560

    Article  CAS  Google Scholar 

  16. D. Huang, Q. Zhang, and P. Qiao, Molecular Dynamics Evaluation of Strain Rate and Size Effects on Mechanical Properties of FCC Nickel Nanowires, Comput. Mater. Sci., 2011, 50(3), p 903–910

    Article  CAS  Google Scholar 

  17. W.D. Wang, C.L. Yi, and K.Q. Fan, Molecular Dynamics Study on Temperature and Strain Rate Dependences of Mechanical Tensile Properties of Ultrathin Nickel Nanowires, Trans. Nonferrous Met. Soc. China, 2013, 23(11), p 3353–3361. https://doi.org/10.1016/s1003-6326(13)62875-7

    Article  CAS  Google Scholar 

  18. H.F. Zhan, Y.T. Gu, C. Yan, X.Q. Feng, and P.K.D.V. Yarlagadda, Numerical Exploration of Plastic Deformation Mechanisms of Copper Nanowires with Surface Defects, Comput. Mater. Sci., 2011, 50(12), p 3425–3430

    Article  CAS  Google Scholar 

  19. H. Zhan and Y. Gu, Atomistic Exploration of Deformation Properties of Copper Nanowires with Pre-Existing Defects, Comput. Model. Eng. Sci., 2011, 80(1), p 23–56

    Google Scholar 

  20. S.F. Ferdous and A. Adnan, Role of a Single Surface Vacancy on the Tensile Stress-Strain Relations of Single Crystal Ni Nanowire, Comput. Mater. Sci., 2014, 90, p 221–231. https://doi.org/10.1016/j.commatsci.2014.04.022

    Article  CAS  Google Scholar 

  21. M. Makino, T. Tsuji, and N. Noda, MD Simulation of Atom-Order Void Formation in Ni Fcc Metal, Comput. Mech., 2000, 26(3), p 281–287. https://doi.org/10.1007/s004660000155

    Article  Google Scholar 

  22. M.J. Buehler and H. Gao, Ultra-Large Scale Simulations of Dynamic Materials Failure, Handb. Theor. Comput. Nanotechnol., 2005, 10, p 1–41

    Google Scholar 

  23. M.I. Mendelev, M.J. Kramer, S.G. Hao, K.M. Ho, and C.Z. Wang, Development of Interatomic Potentials Appropriate for Simulation of Liquid and Glass Properties of nizr2 Alloy, Philos. Mag., 2012, 92(35), p 4454–4469

    Article  CAS  Google Scholar 

  24. J.J. Bean and K.P. McKenna, Origin of Differences in the Excess Volume of Copper and Nickel Grain Boundaries, Acta Mater., 2016, 110, p 246–257

    Article  CAS  Google Scholar 

  25. S.M. Rassoulinejad-Mousavi, Y. Mao, and Y. Zhang, Evaluation of Copper, Aluminum, and Nickel Interatomic Potentials on Predicting the Elastic Properties, J. Appl. Phys., 2016, 119(24).

  26. R. Rezaei, C. Deng, H. Tavakoli-Anbaran, and M. Shariati, Deformation Twinning-Mediated Pseudoelasticity in Metal–graphene Nanolayered Membrane, Philos. Mag. Lett., 2016, 96(8), p 322–329. https://doi.org/10.1080/09500839.2016.1216195

    Article  CAS  Google Scholar 

  27. W.J. Zhang, Z.L. Liu, and Y.F. Peng, Molecular Dynamics Simulations of the Melting Curves and Nucleation of Nickel Under Pressure, Phys. B Condens. Matter, 2014, 449, p 144–149. https://doi.org/10.1016/j.physb.2014.05.025

    Article  CAS  Google Scholar 

  28. S. Plimpton, LAMMPS: Molecular Dynamics Simulator. http://lammps.sandia.gov/, 2011.

  29. H. Liu and J. Zhou, Plasticity in Nanotwinned Polycrystalline Ni Nanowires Under Uniaxial Compression, Mater. Lett., 2016, 163, p 179–182. https://doi.org/10.1016/j.matlet.2015.10.068

    Article  CAS  Google Scholar 

  30. R. Cao and C. Deng, The Ultra-Small Strongest Grain Size in Nanocrystalline Ni Nanowires, Scr. Mater., 2015, 94, p 9–12. https://doi.org/10.1016/j.scriptamat.2014.09.002

    Article  CAS  Google Scholar 

  31. F. Sansoz and V. Dupont, Nanoindentation and Plasticity in Nanocrystalline Ni Nanowires: A Case Study in Size Effect Mitigation, Scr. Mater., 2010, 63(11), p 1136–1139. https://doi.org/10.1016/j.scriptamat.2010.08.028

    Article  CAS  Google Scholar 

  32. Y. Liu and J. Zhao, The Size Dependence of the Mechanical Properties and Breaking Behavior of Metallic Nanowires: A Statistical Description, Comput. Mater. Sci., 2011, 50(4), p 1418–1424. https://doi.org/10.1016/j.commatsci.2010.11.026

    Article  CAS  Google Scholar 

  33. W.G. Hoover, Canonical Dynamics: Equilibrium Phase-Space Distributions, Phys. Rev. A, 1985, 31(3), p 1695

    Article  CAS  Google Scholar 

  34. A.R. Setoodeh and H. Attariani, Nanoscale Simulations of Bauschinger Effects on a Nickel Nanowire, Mater. Lett., 2008, 62(27), p 4266–4268

    Article  CAS  Google Scholar 

  35. W. Zhu, H. Wang, and W. Yang, Orientation- and Microstructure-Dependent Deformation in Metal Nanowires under Bending, Acta Mater., 2012, 60(20), p 7112–7122. https://doi.org/10.1016/j.actamat.2012.09.018

    Article  CAS  Google Scholar 

  36. J. Diao, K. Gall, M.L. Dunn, and J.A. Zimmerman, Atomistic Simulations of the Yielding of Gold Nanowires, Acta Mater., 2006, 54(3), p 643–653

    Article  CAS  Google Scholar 

  37. C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton, Dislocation Nucleation and Defect Structure During Surface Indentation, Phys. Rev. B Condens. Matter Mater. Phys, 1998, 58(17), p 11085–11088. https://doi.org/10.1103/physrevb.58.11085

    Article  CAS  Google Scholar 

  38. A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO-the Open Visualization Tool, Model. Simul. Mater. Sci. Eng., 2010, 18(1), p 15012. https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  39. A. Stukowski, V.V. Bulatov, and A. Arsenlis, Automated Identification and Indexing of Dislocations in Crystal Interfaces, Model. Simul. Mater. Sci. Eng., 2012, 20(8), p 85007

    Article  Google Scholar 

  40. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York, 1983, p 697

    Google Scholar 

  41. E.A. Alfyorova and D.V. Lychagin, Self-Organization of Plastic Deformation and Deformation Relief in FCC Single Crystals, Mech. Mater., 2017, 2018(117), p 202–213

    Google Scholar 

  42. D.V. Lychagin, E.A. Alfyorova, and A.S. Tailashev, Misorientation Development During the Formation of Macrobands in the [001] Nickel Single Crystals, Russ. Phys. J., 2015, 58(5), p 717–723

    Article  CAS  Google Scholar 

  43. W.P. Wu and Z.Z. Yao, Molecular Dynamics Simulation of Stress Distribution and Microstructure Evolution Ahead of a Growing Crack in Single Crystal Nickel, Theor. Appl. Fract. Mech., 2012, 62(1), p 67–75. https://doi.org/10.1016/j.tafmec.2013.01.008

    Article  CAS  Google Scholar 

  44. S. Brinckmann, R. Sivanesapillai, and A. Hartmaier, On the Formation of Vacancies by Edge Dislocation Dipole Annihilation in Fatigued Copper, Int. J. Fatigue, 2011, 33(10), p 1369–1375. https://doi.org/10.1016/j.ijfatigue.2011.05.004

    Article  CAS  Google Scholar 

  45. J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed., Wiley, New York, 1982

    Google Scholar 

  46. G.E. Dieter and D.J. Bacon, Mechanical Metallurgy, McGraw-Hill, New York, 1986

    Google Scholar 

  47. L. Smith, J.A. Zimmerman, L.M. Hale, and D. Farkas, Molecular Dynamics Study of Deformation and Fracture in a Tantalum Nano-Crystalline Thin Film, Model. Simul. Mater. Sci. Eng., 2014, 22(4).

  48. D. Huang, Q. Zhang, and Y. Guo, Molecular Dynamics Simulation for Axial Tension Process of α-Fe and Ni Nano Wires, Ordnance Mater. Sci. Eng., 2006, 5, p 4

    Google Scholar 

  49. M. Chen, E. Ma, K.J. Hemker, H. Sheng, Y. Wang, and X. Cheng, Deformation Twinning in Nanocrystalline Aluminum, Science, 2003, 300, p 1275–1277. https://doi.org/10.1126/science.1083727

    Article  CAS  Google Scholar 

  50. D. Chen, J. Wang, T. Chen, and L. Shao, Defect Annihilation at Grain Boundaries in Alpha-Fe, Sci. Rep., 2013, 3(13), p 1–5

    Google Scholar 

  51. P.H. Sung and T.C. Chen, Studies of Crack Growth and Propagation of Single-Crystal Nickel by Molecular Dynamics, Comput. Mater. Sci., 2015, 102, p 151–158. https://doi.org/10.1016/j.commatsci.2015.02.031

    Article  CAS  Google Scholar 

  52. J. Zhang and S. Ghosh, Molecular Dynamics Based Study and Characterization of Deformation Mechanisms Near a Crack in a Crystalline Material, J. Mech. Phys. Solids, 2013, 61(8), p 1670–1690. https://doi.org/10.1016/j.jmps.2013.04.004

    Article  CAS  Google Scholar 

  53. A. Prakash, J. Guénolé, J. Wang, J. Müller, E. Spiecker, M.J. Mills, I. Povstugar, P. Choi, D. Raabe, and E. Bitzek, Atom Probe Informed Simulations of Dislocation-Precipitate Interactions Reveal the Importance of Local Interface Curvature, Acta Mater., 2015, 92, p 33–45

    Article  CAS  Google Scholar 

  54. G. Sainath and B.K. Choudhary, Molecular Dynamics Simulation of Twin Boundary Effect on Deformation of Cu Nanopillars, Phys. Lett. A, 2015, 379(34–35), p 1902–1905

    Article  CAS  Google Scholar 

  55. S. Zhang and Y. Wang, Molecular Dynamics Simulation of Tension-Compression Asymmetry in Plasticity of Fivefold Twinned Ag Nanopillars, Phys. Lett. Sect. A Gen. At. Solid State Phys., 2015, 379(6), p 603–606

    CAS  Google Scholar 

  56. Y. Zhang, S. Jiang, X. Zhu, and Y. Zhao, Dislocation Mechanism of Void Growth at Twin Boundary of Nanotwinned Nickel Based on Molecular Dynamics Simulation, Phys. Lett. Sect. A Gen. At. Solid State Phys., 2016, 380(35), p 2757–2761. https://doi.org/10.1016/j.physleta.2016.06.044

    Article  CAS  Google Scholar 

  57. Y. Zhang, S. Jiang, X. Zhu, and Y. Zhao, Influence of Void Density on Dislocation Mechanisms of Void Shrinkage in Nickel Single Crystal Based on Molecular Dynamics Simulation, Phys. E Low-Dimens. Syst. Nanostruct., 2017, 90(March), p 90–97. https://doi.org/10.1016/j.physe.2017.03.014

    Article  CAS  Google Scholar 

  58. S. Aubry and D.A. Hughes, Reductions in Stacking Fault Widths in Fcc Crystals: Semiempirical Calculations, Phys. Rev. B Condens. Matter Mater. Phys., 2006, 73(22), p 1–15

    Article  Google Scholar 

  59. V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter, Dislocation-Dislocation and Dislocation-Twin Reactions in Nanocrystalline Al by Molecular Dynamics Simulation, Acta Mater., 2003, 51(14), p 4135–4147. https://doi.org/10.1016/S1359-6454(03)00232-5

    Article  CAS  Google Scholar 

  60. X. Zhao, C. Lu, A.K. Tieu, L. Pei, L. Zhang, L. Su, and L. Zhan, Deformation Mechanisms in Nanotwinned Copper by Molecular Dynamics Simulation, Mater. Sci. Eng. A, 2016, 2017(687), p 343–351

    Google Scholar 

  61. X.Z. Liao, S.G. Srinivasan, Y.H. Zhao, M.I. Baskes, Y.T. Zhu, F. Zhou, E.J. Lavernia, and H.F. Xu, Formation Mechanism of Wide Stacking Faults in Nanocrystalline Al, Appl. Phys. Lett., 2004, 84(18), p 3564–3566

    Article  CAS  Google Scholar 

  62. A. Hunter and I.J. Beyerlein, Stacking Fault Emission from Grain Boundaries: Material Dependencies and Grain Size Effects, Mater. Sci. Eng. A, 2014, 600, p 200–210. https://doi.org/10.1016/j.msea.2014.02.030

    Article  CAS  Google Scholar 

  63. C.B. Carter and S.M. Holmes, The Stacking Fault Energy of Nickel, Philos. Mag., 1977, 35(5), p 1161–1172

    Article  CAS  Google Scholar 

  64. D. Hull and D.J. Bacon, Chapter 5 - Dislocations in Face-Centered Cubic Metals, Introduction to Dislocations, D. Hull and D.J. Bacon, Eds., Fifth Edit, (Oxford), Butterworth-Heinemann, 2011, p 85–107, https://doi.org/10.1016/B978-0-08-096672-4.00005-0.

  65. J.A. Zimmerman, H. Gao, and F.F. Abraham, Generalized Stacking Fault Energies for Embedded Atom FCC Metals, Model. Simul. Mater. Sci. Eng., 2000, 8, p 103–115

    Article  CAS  Google Scholar 

  66. Z.Q. Wang, I.J. Beyerlein, and R. LeSar, Dislocation Motion in High Strain-Rate Deformation, Philos. Mag., 2007, 87(16), p 2263–2279

    Article  CAS  Google Scholar 

  67. Q. Kun, Y. Li-Ming, and H. Shi-Sheng, Mechanism of Strain Rate Effect Based on Dislocation Theory, Chin. Phys. Lett., 2009, 26(3), p 36103

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Department of Science and Technology, India, for their support (DST No: YSS/2014/000985).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natraj Yedla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katakam, K.C., Gupta, P. & Yedla, N. Large-Scale Molecular Dynamics Simulation Studies on Deformation of Ni Nanowires: Surface Profile, Defects and Stacking Fault Width Analysis. J. of Materi Eng and Perform 28, 63–78 (2019). https://doi.org/10.1007/s11665-018-3795-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3795-7

Keywords

Navigation