Skip to main content

Advertisement

Log in

Effect of Combined Rolling–ECAP on Ultrafine-Grained Structure and Properties in 6063 Al Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Grain structure and mechanical properties of 6063 Al alloy subjected to one, two and three passes via combined rolling–ECAP at room temperature were investigated. The yield strength (196 MPa) and tensile strength (242 MPa) after three passes increased by 3.7 times and three times, respectively, relative to the initial annealed alloy (YS: 53 MPa, UTS: 82 MPa). Heat treatment comprising homogenizing annealing (600 °C, 15 min), water quenching from 520 °C and reheating to 100 °C before each pass led to ultrafine grains (600-800 nm) and high yield strength (245 MPa) and tensile strength (277 MPa). The three-pass combined rolling–ECAP process in conjunction with a suitable heat treatment is an effective way to form UFG structure and improved mechanical properties in 6063 Al alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Y. Estrin and A. Vinogradov, Extreme Grain Refinement by Severe Plastic Deformation: A Wealth of Challenging Science, Acta Mater., 2013, 61(3), p 782–817

    Article  CAS  Google Scholar 

  2. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-Dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., 2014, 60, p 130–207

    Article  CAS  Google Scholar 

  3. T.G. Langdon, Twenty-Five Years of Ultrafine-Grained Materials: Achieving Exceptional Properties Through Grain Refinement, Acta Mater., 2013, 61(19), p 7035–7059

    Article  CAS  Google Scholar 

  4. R.Z. Valiev, Superior Strength in Ultrafine-Grained Materials Produced by SPD Processing, Mater. Trans., 2014, 55(1), p 13–18

    Article  CAS  Google Scholar 

  5. I. Sabirov, M.Y. Murashkin, and R.Z. Valiev, Nanostructured Aluminium Alloys Produced by Severe Plastic Deformation: New Horizons in Development, Mater. Sci. Eng. A, 2013, 560, p 1–24

    Article  CAS  Google Scholar 

  6. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu, Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation: Ten Years Later, JOM, 2016, 68(4), p 1216–1226

    Article  CAS  Google Scholar 

  7. T.G. Langdon, The Characteristics of Grain Refinement in Materials Processed by Severe Plastic Deformation, Rev. Adv. Mater. Sci., 2006, 13, p 6–14

    CAS  Google Scholar 

  8. L.S. Toth and C. Gu, Ultrafine-Grain Metals by Severe Plastic Deformation, Mater. Charact., 2014, 92, p 1–14

    Article  CAS  Google Scholar 

  9. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater Sci., 2000, 45(2), p 103–189

    Article  CAS  Google Scholar 

  10. M. Jahedi, M. Knezevic, and M.H. Paydar, High-Pressure Double Torsion as a Severe Plastic Deformation Process: Experimental Procedure and Finite Element Modeling, J. Mater. Eng. Perform., 2015, 24(4), p 1471–1482

    Article  CAS  Google Scholar 

  11. J. Straska, M. Janecek, J. Gubicza, T. Krajnak, E.Y. Yoon, and H.S. Kim, Evolution of Microstructure and Hardness in AZ31 Alloy Processed by High Pressure Torsion, Mater. Sci. Eng. A, 2015, 625, p 98–106

    Article  CAS  Google Scholar 

  12. A. Alhamidi and Z. Horita, Grain Refinement and High Strain Rate Superplasticity in Alumunium 2024 Alloy Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2015, 622, p 139–145

    Article  CAS  Google Scholar 

  13. R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater. Sci., 2006, 51, p 881–981

    Article  CAS  Google Scholar 

  14. M.H. Shaeri, M.T. Salehi, S.H. Seyyedein, M.R. Abutalebi, and J.K. Park, Microstructure and Mechanical Properties of Al-7075 Alloy Processed by Equal Channel Angular Pressing Combined with Aging Treatment, Mater. Des., 2014, 57, p 250–257

    Article  CAS  Google Scholar 

  15. X. Zhang, X. Liu, J. Wang, and Y. Cheng, Effect of Route on Tensile Anisotropy in Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2016, 676, p 65–72

    Article  CAS  Google Scholar 

  16. W. Wei, S.L. Wang, K.X. Wei, I.V. Alexandrov, Q.B. Du, and J. Hu, Microstructure and Tensile Properties of Cu-Al Alloys Processed by ECAP and Rolling at Cryogenic Temperature, J. Alloys Compd., 2016, 678, p 506–510

    Article  CAS  Google Scholar 

  17. M. Vaseghi, H.S. Kim, A.K. Taheri, and A. Momeni, Inhomogeneity Through Warm Equal Channel Angular Pressing, J. Mater. Eng. Perform., 2013, 22(6), p 1666–1671

    Article  CAS  Google Scholar 

  18. A. Jaeger and V. Gaertnerova, Equal Channel Angular Pressing of Magnesium at Room Temperature: The Effect of Processing Route on Microstructure and Texture, Philos. Mag. Lett., 2012, 92(8), p 384–390

    Article  Google Scholar 

  19. X. Zhao, N. Chen, and N. Zhao, Numerical Simulation of Equal Channel Angular Pressing for Multi-Pass in Different Routes, Appl. Mech. Mater., 2012, 268–270, p 373–377

    Article  Google Scholar 

  20. M. Gzyl, A. Rosochowski, E. Yakushina, P. Wood, and L. Olejnik, Route Effects in I-ECAP of AZ31B Magnesium Alloy, Key Eng. Mater., 2013, 554–557, p 876–884

    Article  Google Scholar 

  21. G.I. Raab, G.V. Kulyasov, V.A. Polozovsky, R.Z. Valiev, Уcтpoйcтвo для oбpaбoтки мeтaллoв дaвлeниeм (A Device for Processing of Metals by Pressure), RU Patent 2,181,314 (2002). (in Russian)

  22. A.B. Naizabekov, S.N. Lezhnev, and I.E. Volokitina, Change in Copper Microstructure and Mechanical Properties with Deformation in an Equal Channel Stepped Die, Met. Sci. Heat Treat., 2015, 57(5–6), p 254–260

    Article  CAS  Google Scholar 

  23. D. Green, The continuous extrusion forming of wire sections, TRG Report 2364 (S), 1972.

  24. R.G. Chembarisova and I.V. Aleksandrov, Simulation of the Elastoplastic Behavior of Grade-4 Ti in the ECAP-C Process, Met. Sci. Heat Treat., 2016, 58(3–4), p 236–244

    Article  CAS  Google Scholar 

  25. D.V. Gunderov, A.V. Polyakov, I.P. Semenova, G.I. Raab, A.A. Churakova, E.I. Gimaltdinova et al., Evolution of Microstructure, Macrotexture and Mechanical Properties of Commercially Pure Ti During ECAP-Conform Processing and Drawing, Mater. Sci. Eng. A, 2013, 562, p 128–136

    Article  CAS  Google Scholar 

  26. G.I. Raab, E.I. Fakhretdinova, R.Z. Valiev, L.P. Trifonenkov, and V.F. Frolov, Computer Study of the Effect of Tooling Geometry on Deformation Parameters in the Plastic Shaping of Aluminum Wire Rod by Multi-ECAP-Conform, Metallurgist, 2016, 59(11–12), p 1007–1014

    Article  Google Scholar 

  27. C. Xu, S. Schroeder, P.B. Berbon, and T.G. Langdon, Principles of ECAP-Conform as a Continuous Process for Achieving Grain Refinement: Application to an Aluminum Alloy, Acta Mater., 2010, 58(4), p 1379–1386

    Article  CAS  Google Scholar 

  28. M. Duchek, T. Kubina, J. Hodek, and J. Dlouhy, Development of the Production of Ultrafine-Grained Titanium with the Conform Equipment, Mater. Tehnol., 2013, 47(4), p 515–518

    CAS  Google Scholar 

  29. J. Hodek, T. Kubina, J. Dlouhy, FEM Model and Experimental Production of Titanium Rods Using Conform Machine, in 22nd International Conference on Metallurgy And Materials (METAL 2013), pp. 347–351

  30. I.P. Semenova, A.V. Polyakov, G.I. Raab, T.C. Lowe, and R.Z. Valiev, Enhanced Fatigue Properties of Ultrafine-Grained Ti Rods Processed by ECAP-Conform, J. Mater. Sci., 2012, 47(22), p 7777–7781

    Article  CAS  Google Scholar 

  31. A. Naizabekov, S. Lezhnev, Mathematical modeling of equal-channel angled drawing in step tool, in 21st International Conference on Metallurgy and Materials (METAL 2012), pp. 453–460

  32. A. Volokitin, A. Naizabekov, S. Lezhnev, Research of a new method of deformation—”pressing–drawing” on mechanical properties of steel wire, in 22nd International Conference on Metallurgy And Materials (METAL 2013), pp. 376–379

  33. S. Lezhnev, A. Naizabekov, A. Volokitin, and I. Volokitina, New Combined Process Pressing–Drawing and Impact on Properties of Deformable Aluminum Wire, Procedia Eng., 2014, 81, p 1505–1510

    Article  Google Scholar 

  34. N.V. Lopatin, G.A. Salishchev, and S.P. Galkin, Mathematical Modeling of Radial-Shear Rolling of the VT6 Titanium Alloy Under Conditions of Formation of a Globular Structure, Russ. J. Non-Ferrous Met., 2011, 52(5), p 442–447

    Article  Google Scholar 

  35. A.B. Naizabekov, S.N. Lezhnev, H. Dyja, T. Bajor, K. Tsay, A. Arbuz et al., The Effect of Cross Rolling on the Microstructure of Ferrous and Non-ferrous Metals and Alloys, Metalurgija, 2017, 56(1–2), p 199–202

    Google Scholar 

  36. A. Naizabekov, S. Lezhnev, A. Arbuz, and E. Panin, Combined process “helical rolling–pressing” and its effect on the microstructure of ferrous and non-ferrous materials, Metall. Res. Technol., 2018, 115(2), p 213

    Article  Google Scholar 

  37. I.P. Mazur, A.B. Naizabekov, S.N. Lezhnev, E.A. Panin, R.O. Vedichshev, Уcтpoйcтвo для нeпpepывнoгo пpeccoвaния мeтaллoв и cплaвoв (Device for Continuous Pressing of Metals and Alloys), Patent of Russian Federation No. 2629134 (C1), 2017, bulletin No. 24.

  38. A. Naizabekov, S. Lezhnev, E. Panin, and I. Volokitina, New combined technology of deformation “rolling-equal channel angular pressing”, allowing to obtain metals and alloys with sub-ultra-fine-grained structure, Severe Plastic Deformation Techniques, M. Cabibbo, Ed., InTech, Rijeka, 2017, https://doi.org/10.5772/intechopen.68663

    Chapter  Google Scholar 

  39. A.P. Grudev, Teopия пpoкaтки (Rolling theory), Intermet Engineering, Moscow, 2001

    Google Scholar 

  40. V.L. Kolmogorov, Mexaникa oбpaбoтки мeтaллoв дaвлeниeм (Mechanics of metal forming), USTU-UPI, Ekaterinburg, 2001

    Google Scholar 

  41. ASM International, ASM Metals Handbook Volume 12: Fractography, ASM International, Cleveland, 2002

    Google Scholar 

  42. P.Y. Bryantsev, Investigation and optimization of heat treatment of ingots of alloys of the system Al-Mg-Si. Dissertation on competition of a scientific degree of candidate of technical Sciences, Moscow, 2007

  43. I. Sabirov, M.T. Perez-Prado, M. Murashkin, J.M. Molina-Aldareguia, E.V. Bobruk, N.F. Yunusova et al., Application of Equal Channel Angular Pressing with Parallel Channels for Grain Refinement in Aluminium Alloys and its Effect on Deformation Behavior, Int. J. Mater. Form., 2010, 3(1), p 411–414

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdrakhman Naizabekov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naizabekov, A., Lezhnev, S., Panin, E. et al. Effect of Combined Rolling–ECAP on Ultrafine-Grained Structure and Properties in 6063 Al Alloy. J. of Materi Eng and Perform 28, 200–210 (2019). https://doi.org/10.1007/s11665-018-3790-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3790-z

Keywords

Navigation