Skip to main content

Advertisement

Log in

Effects of Heat Treatment on Microstructure, Mechanical Properties, Corrosion Resistance and Cytotoxicity of ZM21 Magnesium Alloy as Biomaterials

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effects of heat treatment on microstructure, mechanical properties, corrosion resistance and cytotoxicity of extruded Mg-2Zn-1Mn (wt.%) alloy were investigated for biomedical application in this study. The extruded alloy was T4 treated at 510 °C for 4 h and T5 treated at 200 °C for 16 h separately. The extruded Mg-Zn-Mn alloy mainly consists of MgxMny phases. After T4 treatment, the amount of MgxMny phases decreases and average grain size rises from 8 to 24 μm. After T5 treatment, Mg7Zn3 phase newly precipitates along the grain boundaries and the size of grain remains similar. Compared with the T4-treated samples, the extruded and T5-treated samples exhibit higher mechanical properties. The T5-treated samples have an ultimate tensile stress of 273 MPa and an elongation of 19.7%. On the other hand, T4-treated samples present higher corrosion resistance in electrochemical tests. The degradation rates of extruded, T4-treated and T5-treated samples are 0.44 mm/year, 0.48 mm/year and 0.50 mm/year, respectively, in Ringer’s solution at 37 ± 0.2 °C. In addition, T4-treated alloy does not induce toxicity to the L-929 cells in in vitro cytotoxicity test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Trumbo, S. Schlicker, A.A. Yates, and M. Poos, Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids, J. Am. Diet. Assoc., 2002, 102, p 1621–1630

    Article  Google Scholar 

  2. F. Witte, J. Fischer, J. Nellesen, H.A. Crostack, V. Kaese, A. Pisch, F. Beckmann, and H. Windhagen, In Vitro and In Vivo Corrosion Measurements of Magnesium Alloys, Biomaterials, 2006, 27, p 1013–1018

    Article  CAS  Google Scholar 

  3. P. Zartner, R. Cesnjevar, H. Singer, and M. Weyand, First Successful Implantation of a Biodegradable Metal Stent into the Left Pulmonary Artery of a Preterm Baby, Catheter. Cardiovasc. Interv., 2005, 66, p 590–594

    Article  Google Scholar 

  4. D. Tie, R. Guan, H. Liu, A. Cipriano, Y. Liu, Q. Wang, Y. Huang, and N. Hort, An In Vivo Study on the Metabolism and Osteogenic Activity of Bioabsorbable Mg-1Sr Alloy, Acta Biomater., 2016, 29, p 455–467

    Article  CAS  Google Scholar 

  5. S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, and Y. Bian, Research on an Mg-Zn Alloy as a Degradable Biomaterial, Acta Biomater., 2010, 6, p 626–640

    Article  CAS  Google Scholar 

  6. Z. Li, X. Gu, S. Lou, and Y. Zheng, The Development of Binary Mg-Ca Alloys for Use as Biodegradable Materials Within Bone, Biomaterials, 2008, 29, p 1329–1344

    Article  CAS  Google Scholar 

  7. K. Yu, L. Chen, J. Zhao, S. Li, Y. Dai, Q. Huang, and Z. Yu, In Vitro Corrosion Behavior and In Vivo Biodegradation of Biomedical β-Ca3(PO4)2/Mg–Zn Composites, Acta Biomater., 2012, 8, p 2845–2855

    Article  CAS  Google Scholar 

  8. M.B. Kannan and R.K. Raman, In Vitro Degradation and Mechanical Integrity of Calcium-Containing Magnesium Alloys in Modified-Simulated Body Fluid, Biomaterials, 2008, 29, p 2306

    Article  CAS  Google Scholar 

  9. V. Kaesel, P.T. Tai, F.W. Bach, H. Haferkamp, F. Witte, H. Windhagen, Approach to control the corrosion of magnesium by alloying, in: Magnesium: Proceedings of the 6th International Conference Magnesium Alloys and Their Applications, 2005, p. 534–539

  10. A. McGoron and D. Persaud-Sharma, Biodegradable Magnesium Alloys: A Review of Material Development and Applications, J. Biomater. Tissue Eng., 2011, 12, p 25–39

    Google Scholar 

  11. M. Erinc, W.H. Sillekens, R. Mannens, and R.J. Werkhoven, Applicability of existing magnesium alloys as biomedical implant materials, Magnesium Technology. San Francisco, E.A. Nyberg, S.R. Agnew, N.R. Neelameggham, and M.Q. Pekguleryuz, Ed., Minerals, Metals and Materials Society, Warrendale, 2009, p 209–214

    Google Scholar 

  12. M. Bamberger and G. Dehm, Trends in the Development of New Mg Alloys, Ann. Rev. Mater. Res., 2008, 38, p 505–533

    Article  CAS  Google Scholar 

  13. T.D. Luckey and B. Venugopal, Metal Toxicity in Mammals. Volume 1. Physiologic and Chemical Basis for Metal Toxicity, Biochem. Soc. Trans., 1977, 6, p 819–820

    Google Scholar 

  14. G. Song, Control of Biodegradation of Biocompatable Magnesium Alloys, Corros. Sci., 2007, 49, p 1696–1701

    Article  CAS  Google Scholar 

  15. S. Farè, Q. Ge, M. Vedani, G. Vimercati, D. Gastaldi, F. Migliavacca, L. Petrini, and S. Trasatti, Evaluation of Material Properties and Design Requirements for Biodegradable Magnesium Stents, Matéria, 2010, 15(2), p 96–103

    Google Scholar 

  16. E. Zhang, D. Yin, L. Xu, L. Yang, and K. Yang, Microstructure, Mechanical and Corrosion Properties and Biocompatibility of Mg–Zn–Mn Alloys for Biomedical Application, Mater. Sci. Eng. C Mater. Biol. Appl., 2009, 29, p 987–993

    Article  CAS  Google Scholar 

  17. Y. Chen, Z. Xu, C. Smith, and J. Sankar, Recent Advances on the Development of Magnesium Alloys for Biodegradable Implants, Acta Biomater., 2014, 10, p 4561

    Article  CAS  Google Scholar 

  18. Y. Song, E.H. Han, D. Shan, D.Y. Chang, and B.S. You, The Role of Second Phases in the Corrosion Behavior of Mg–5Zn Alloy, Corros. Sci., 2012, 60, p 238–245

    Article  CAS  Google Scholar 

  19. X.-B. Liu, D.-Y. Shan, Y.-W. Song, and E.-H. Han, Effects of Heat Treatment on Corrosion Behaviors of Mg-3Zn Magnesium Alloy, Trans. Nonferrous Metal Soc., 2010, 20, p 1345–1350

    Article  CAS  Google Scholar 

  20. X. Liu, D. Shan, Y. Song, R. Chen, and E. Han, Influences of the Quantity of Mg 2 Sn Phase on the Corrosion Behavior of Mg–7Sn Magnesium Alloy, Electrochim. Acta, 2011, 56, p 2582–2590

    Article  CAS  Google Scholar 

  21. Y. Wang, D. Tie, R. Guan, N. Wang, Y. Shang, T. Cui, and J. Li, Microstructures, Mechanical Properties, and Degradation Behaviors of Heat-Treated Mg-Sr Alloys as Potential Biodegradable Implant Materials, J Mech. Behav. Biomed., 2018, 77, p 47–57

    Article  CAS  Google Scholar 

  22. X. Li, J.-H. Jiang, Y.-H. Zhao, A.-B. Ma, D.-J. Wen, and Y.-T. Zhu, Effect of Equal-Channel Angular Pressing and Aging on Corrosion Behavior of ZK60Mg Alloy, Trans. Nonferrous Metal Soc., 2015, 25, p 3909–3920

    Article  Google Scholar 

  23. Y. Yan, H. Cao, Y. Kang, K. Yu, T. Xiao, J. Luo, Y. Deng, H. Fang, H. Xiong, and Y. Dai, Effects of Zn Concentration and Heat Treatment on the Microstructure, Mechanical Properties and Corrosion Behavior of As-Extruded Mg-Zn Alloys Produced by Powder Metallurgy, J. Alloy. Compd., 2017, 693, p 1277–1289

    Article  CAS  Google Scholar 

  24. International A. Standard Test Methods for Determining Average Grain Size, 2013

  25. J.A. Helsen and H. Jürgen Breme, Metals as Biomaterials, Wiley, New York, 1998, p 522ISBN 0-471-96935-4

    Google Scholar 

  26. Z. Shi and A. Atrens, An Innovative Specimen Configuration for the Study of Mg Corrosion, Corros. Sci., 2011, 53, p 226–246

    Article  CAS  Google Scholar 

  27. B.S. Institution, EN ISO 10993-5. Biological evaluation of medical devices. Part 5. Tests for in vitro cytotoxicity, ANSI/AAMI, Arlington, 1999

  28. Y. Zhou, Y. Li, D. Luo, Y. Ding, and P. Hodgson, Microstructures, Mechanical and Corrosion Properties and Biocompatibility of as Extruded Mg–Mn–Zn–Nd Alloys for Biomedical Applications, Mater. Sci. Eng. C Mater. Biol. Appl., 2015, 49, p 93–100

    Article  CAS  Google Scholar 

  29. X. Wang, P. Zhang, L.H. Dong, X.L. Ma, J.T. Li, and Y.F. Zheng, Microstructure and Characteristics of Interpenetrating β-TCP/Mg–Zn–Mn Composite Fabricated by Suction Casting, Mater. Des., 2014, 54, p 995–1001

    Article  CAS  Google Scholar 

  30. D. Lin, F. Hung, T. Lui, and M. Yeh, Heat Treatment Mechanism and Biodegradable Characteristics of ZAX1330Mg Alloy, Mater. Sci. Eng. C Mater. Biol. Appl., 2015, 51, p 300–308

    Article  CAS  Google Scholar 

  31. Y. Song, E.-H. Han, D. Shan, C.D. Yim, and B.S. You, The Effect of Zn Concentration on the Corrosion Behavior of Mg–xZn alloys, Corros. Sci., 2012, 65, p 322–330

    Article  CAS  Google Scholar 

  32. C.N. Cao and J.Q. Zhang, An Introduction of Electrochemical Impedance Spectroscopy Science, Science Press, Beijing, 2002, p 86–106

    Google Scholar 

  33. M. Jamesh, S. Kumar, and T.S.N.S. Narayanan, Corrosion Behavior of Commercially Pure Mg and ZM21Mg Alloy in Ringer’s Solution—Long Term Evaluation by EIS, Corros. Sci., 2011, 53, p 645–654

    Article  CAS  Google Scholar 

  34. G. Song, A. Atrens, D. Stjohn, J. Nairn, and Y. Li, The Electrochemical Corrosion of Pure Magnesium in 1N NaCl, Corros. Sci., 1997, 39, p 855–875

    Article  CAS  Google Scholar 

  35. Okamoto H, Phase Diagrams for Binary Alloys, in Workshops on Abstract State Machines, 2000.

  36. E.O. Hall, Yield Point Phenomena in Metals and Alloys, Macmillan, London, 1970

    Book  Google Scholar 

  37. A.J. Ardell, Precipitation Hardening, Metall. Trans. A, 1985, 16, p 2131–2165

    Article  Google Scholar 

  38. D. Zhang, X. Hao, D. Fang, and Y. Chai, Effects of Heat Treatment on Microstructure and Mechanical Properties of as-Extruded Mg-9Sn-1.5Y-0.4Zr Magnesium Alloy, Rare Metal Mater. Eng., 2016, 45, p 2208–2213

    Article  Google Scholar 

  39. S.Z. Zhu, T.J. Luo, T.A. Zhang, Y.T. Liu, and Y.S. Yang, Effects of Extrusion and Heat Treatments on Microstructure and Mechanical Properties of Mg–8Zn–1Al–0.5Cu–0.5Mn Alloy, Trans. Nonferrous Metal Soc., 2017, 27, p 73–81

    Article  CAS  Google Scholar 

  40. H. Zhang, J. Fan, L. Zhang, G. Wu, W. Liu, W. Cui, and S. Feng, Effect of Heat Treatment on Microstructure, Mechanical Properties and Fracture Behaviors of Sand-Cast Mg-4Y-3Nd-1Gd-0.2Zn-0.5Zr Alloy, Mater. Sci. Eng. A Struct. Mater., 2016, 677, p 411–420

    Article  CAS  Google Scholar 

  41. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and its Alloys as Orthopedic Biomaterials: A Review, Biomaterials, 2006, 27, p 1728–1734

    Article  CAS  Google Scholar 

  42. A. Atrens, G.L. Song, M. Liu, Z. Shi, F. Cao, and M.S. Dargusch, Review of Recent Developments in the Field of Magnesium Corrosion, Adv. Eng. Mater., 2015, 17, p 400–453

    Article  CAS  Google Scholar 

  43. G.L. Song, 1–Corrosion electrochemistry of magnesium (Mg) and its alloys, Corrosion of Magnesium Alloys, G.L. Song, Ed., Woodhead, Cambridge, 2011, p 3–65

    Chapter  Google Scholar 

  44. G. Song, A. Atrens, and M. Dargusch, Influence of Microstructure on the Corrosion of Diecast AZ91D, Corros. Sci., 1998, 41, p 249–273

    Article  Google Scholar 

  45. M.M. Avedesian, H. Baker, Magnesium and magnesium alloys-ASM specialty handbook, in Workshops on Abstract State Machines, 1999

  46. A. Atrens, M. Liu, N.I.Z. Abidin, and G.L. Song, 3–Corrosion of magnesium (Mg) alloys and metallurgical influence, Corrosion of Magnesium Alloys, G.L. Song, Ed., Woodhead, Cambridge, 2011, p 117–165

    Chapter  Google Scholar 

  47. A. Atrens, G.L. Song, F. Cao, Z. Shi, and P.K. Bowen, Advances in Mg Corrosion and Research Suggestions, J. Magn. Alloys, 2013, 1, p 177–200

    Article  CAS  Google Scholar 

  48. Z. Shi, F. Cao, G.L. Song, and A. Atrens, Low Apparent Valence of Mg During Corrosion, Corros. Sci., 2014, 88, p 434–443

    Article  CAS  Google Scholar 

  49. A. Pardo, M.C. Merino, A.E. Coy, R. Arrabal, F. Viejo, and E. Matykina, Corrosion Behaviour of Magnesium/Aluminium Alloys in 3.5 wt% NaCl, Corros. Sci., 2008, 50, p 823–834

    Article  CAS  Google Scholar 

  50. X. Gu, W. Zhou, Y. Zheng, L. Dong, Y. Xi, and D. Chai, Microstructure, Mechanical Property, Bio-Corrosion and Cytotoxicity Evaluations of Mg/HA Composites, Mater. Sci. Eng. C Mater. Biol. Appl., 2010, 30, p 827–832

    Article  CAS  Google Scholar 

  51. Y. Dai, Y. Lu, D. Li, K. Yu, D. Jiang, Y. Yan, L. Chen, and T. Xiao, Effects of Polycaprolactone Coating on the Biodegradable Behavior and Cytotoxicity of Mg-6%Zn-10%Ca3(PO4)2 Composite in Simulated Body Fluid, Mater. Lett., 2017, 198, p 118–120

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Hunan Province of China (2018JJ2506). The authors acknowledge the Project (2017GK2120) supported by the Key Research and Development Program of Hunan Province. This work also received financial support of the Natural Science Foundation of Shandong Province of China (ZR2017MEM005) and 2015 ShanDong province project of outstanding subject talent group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, D., Dai, Y., Zhang, Y. et al. Effects of Heat Treatment on Microstructure, Mechanical Properties, Corrosion Resistance and Cytotoxicity of ZM21 Magnesium Alloy as Biomaterials. J. of Materi Eng and Perform 28, 33–43 (2019). https://doi.org/10.1007/s11665-018-3781-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3781-0

Keywords

Navigation