Skip to main content
Log in

Microstructure Evolution and Mechanical Property of Low-Alloy Steel Used for Armor Layer of Flexible Pipe During Thermomechanical Process and Hot Rolling Process

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, the thermomechanical process and hot rolling process were carried out to study the microstructure evolution and mechanical property of low-alloy steel used for armor layer of flexible pipes by analyzing continuous cooling transformation curve, microstructure morphology, grain characteristics, and strength. The experimental results indicate that deformation process promotes phase transformation process of both ferrite and bainite and induces the formation of fine grain. The density of low-angle grain boundary rises with increasing cooling rate. The dislocation concentration in grain becomes larger with the extended cooling rate. The microstructure of hot-rolled specimen consists of polygonal ferrite and granular bainite, which is consistent with one of the deformed specimens with similar cooling rate in dilatometer. The microstructure evolution provides effective data fundament for hot rolling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.B. Zheng, H.K. Jiang, and Y.L. Huang, Hydrogen Permeation Behaviour of X56 Steel in Simulated Atmospheric Environment Under Loading, Corros. Eng. Sci. Technol., 2011, 46, p 365–367

    Article  CAS  Google Scholar 

  2. J. Zhao, X. Wang, W. Hu, J. Kang, G. Yuan, H. Di, and R.D.K. Misra, Microstructure and Mechanism of Strengthening of Microalloyed Pipeline Steel: Ultra-Fast Cooling (UFC) Versus Laminar Cooling (LC), J. Mater. Eng. Perform., 2016, 25, p 2511–2520

    Article  CAS  Google Scholar 

  3. A. Kavousi Sisi and S.E. Mirsalehi, Effect of Post-Weld Heat Treatment on Microstructure and Mechanical Properties of X52 Linepipe HFIW Joints, J. Mater. Eng. Perform., 2015, 24, p 1626–1633

    Article  CAS  Google Scholar 

  4. L.F. de Paiva and M.A. Vaz, An Empirical Model for Flexible Pipe Armor Wire Lateral Buckling Failure load, Appl. Ocean. Res., 2017, 66, p 46–54

    Article  Google Scholar 

  5. Y. Bai, T. Liu, W.D. Ruan, and W. Chen, Mechanical Behavior of Metallic Strip Flexible Pipe Subjected to Tension, Compos. Struct., 2017, 170, p 1–10

    Article  Google Scholar 

  6. J.R.M. de Sousa, G.C. Campello, C.E.F. Kwietniewski, G.B. Ellwanger, and T.R. Strohaecker, Structural Response of a Flexible Pipe with Damaged Tensile Armor Wires Under Pure Tension, Mar. Struct., 2014, 39, p 1–38

    Article  Google Scholar 

  7. Y.J. Jin, R.F. Li, Z.S. Yu, and Y. Wang, Microstructure and Mechanical Properties of Plasma Arc Brazed AISI, 304L Stainless Steel and Galvanized Steel Plates, J. Mater. Eng. Perform., 2016, 25, p 1327–1335

    Article  CAS  Google Scholar 

  8. K. Srivatsa, P. Srinivas, G. Balachandran, and V. Balasubramanian, Room Temperature Microstructure and Property Evaluation of a Heat Treated Fully Bainitic 20CrMoVTiB410 Steel, JOM, 2016, 68, p 2704–2712

    Article  CAS  Google Scholar 

  9. M. Masoumi, M.A. Mohtadi-Bonab, and H.F.G. de Abreu, Effect of Microstructure and Texture on Anisotropy and Mechanical Properties of SAE 970X Steel Under Hot Rolling, J. Mater. Eng. Perform., 2016, 25, p 2847–2854

    Article  CAS  Google Scholar 

  10. C. Liu, J.W. Yang, Q.L. Ge, F. Gao, and J.S. Zou, Mechanical Properties Improvement of Thick Multi-Pass Weld by Layered Ultrasonic Impact Treatment, Sci. Technol. Weld. Join., 2017, 1, p 1. https://doi.org/10.1080/13621718.2017.1327201

    Article  Google Scholar 

  11. P. Gong, E.J. Palmiere, and W.M. Rainforth, Thermomechanical Processing Route to Achieve Ultrafine Grains in Low Carbon Microalloyed Steels, Acta. Mater., 2016, 119, p 43–54

    Article  CAS  Google Scholar 

  12. N.N. Jia, K. Guo, Y.M. He, Y.H. Wang, J.G. Peng, and T.S. Wang, A Thermomechanical Process to Achieve Mechanical Properties Comparable to Those of Quenched-Tempered Medium-C Steel, Mater. Sci. Eng. A., 2017, 700, p 175–182

    Article  CAS  Google Scholar 

  13. Y.Z. Shen, Z.X. Shang, Z.Q. Xu, W.W. Liu, X. Huang, and H. Liu, The Nature of Nano-Sized Precipitates in Ferritic/Martensitic Steel P92 Produced by Thermomechanical Treatment, Mater. Charact., 2016, 119, p 13–23

    Article  CAS  Google Scholar 

  14. J.I. Omale, E.G. Ohaeri, A.A. Tiamiyu, M. Eskandari, K.M. Mostafijur, and J.A. Szpunar, Microstructure, Texture Evolution and Mechanical Properties of X70 Pipeline Steel after Different Yhermomechanical Treatments, Mater. Sci. Eng. A., 2017, 703, p 477–485

    Article  CAS  Google Scholar 

  15. Q.Y. Sha, G.Y. Li, and D.H. Li, Static Recrystallized Grain Size of Coarse-Grained Austenite in an API-X70 Pipeline Steel, J. Mater. Eng. Perform., 2013, 22, p 3626–3630

    Article  CAS  Google Scholar 

  16. E.V. Morales, I.S. Bott, R.A. Silva, A.M. Morales, and L.F.G. de Souza, Characterization of Carbon-Rich Phases in a Complex Microstructure of a Commercial X80 Pipeline Steel, J. Mater. Eng. Perform., 2016, 25, p 2736–2745

    Article  CAS  Google Scholar 

  17. J. Cao, J. Yan, J. Zhang, and T.R. Yu, Effects of Thermomechanical Processing on Microstructure and Properties of Bainitic Work Hardening Steel, Mater. Sci. Eng. A., 2015, 639, p 192–197

    Article  CAS  Google Scholar 

  18. X.J. Liang and A.J. Deardo, A Study of the Influence of Thermomechanical Controlled Processing on the Microstructure of Bainite in High Strength Plate Steel, Metall. Mater. Trans. A, 2014, 45A, p 5173–5184

    Article  Google Scholar 

  19. J. Sun, K. Ji, C.W. Jiang, and Y.C. Zhang, Influence of Various Heat Treatment Stages on Evolution of Microstructure and Grain in H407 Steel, Met. Mater. Int., 2016, 22, p 872–879

    Article  Google Scholar 

  20. J.P. Li, Z.G. Liu, X.L. Bai, and P. Li, Influence of Asymmetric Monotonic Hot Rolling on Microstructures and Mechanical Property of Microalloyed Steel, J. Wuhan. Univ. Technol., 2017, 32, p 422–429

    Article  CAS  Google Scholar 

  21. X.J. Shen, S. Tang, J. Chen, Z.Y. Liu, and G.D. Wang, Improving Toughness of Heavy Steel Plate by Deformation Distribution Under Low Finish Cooling Temperature, J. Mater. Eng. Perform., 2016, 25, p 3682–3690

    Article  CAS  Google Scholar 

  22. H.K.D.H. Bhadeshia, Bainite: Overall Transformation Kinetics, J. Phys., 1982, 43, p 443–448

    Google Scholar 

  23. M.J. Santofimia, F.G. Caballero, C. Capdevila, C. Garcia-Mateo, and C.G. de Andres, Evaluation of Displacive Models for Bainite Transformation Kinetics in Steels, Mater. Trans., 2006, 47, p 492–1500

    Article  Google Scholar 

  24. S.M.C. van Bohemen and D.N. Hanlon, A Physically Based Approach to Model the Incomplete Bainitic Transformation in High-Si steels, Int. J. Mater. Res., 2012, 103, p 987–991

    Article  Google Scholar 

  25. A.M. Ravi, J. Sietsma, and M.J. Santofimia, Bainite Formation Kinetics in Steels and the Dynamic Nature of the Autocatalytic Nucleation Process, Scr. Mater., 2017, 140, p 82–86

    Article  CAS  Google Scholar 

  26. A.M. Ravi, J. Sietsma, and M.J. Santofimia, Exploring Bainite Formation Kinetics Distinguishing Grain-Boundary and Autocatalytic Nucleation in High and Low-Si steels, Acta Mater., 2016, 105, p 155–164

    Article  CAS  Google Scholar 

  27. X.J. Shen, S. Tang, J. Chen, Z.Y. Liu, R.D.K. Misra, and G.D. Wang, Grain Refinement in Surface Layers through Deformation-Induced Ferrite Transformation in Microalloyed Steel Plate, Mater. Des., 2017, 113, p 137–141

    Article  CAS  Google Scholar 

  28. H. Dong and X.J. Sun, Deformation Induced Ferrite Transformation in Low Carbon Steels, Curr. Opin. Solid State Mater. Sci., 2005, 9, p 269–276

    Article  CAS  Google Scholar 

  29. Z.P. Xiong, A.A. Saleh, A.G. Kostryzhev, and E.V. Pereloma, Strain-Induced Ferrite Formation and Its Effect on Mechanical Properties of a Dual Phase Steel Produced Using Laboratory Simulated Strip Casting, J. Alloys Compd., 2017, 721, p 291–306

    Article  CAS  Google Scholar 

  30. C. Ghosh, C. Aranas, Jr., and J.J. Jonas, Dynamic Transformation of Deformed Austenite at Temperatures Above the Ae3, Prog. Mater. Sci., 2016, 82, p 151–233

    Article  CAS  Google Scholar 

  31. J.E. Burke and D. Turnbull, Recrystallization and Grain Growth, Prog. Met. Phys., 1952, 3, p 220–292

    Article  CAS  Google Scholar 

  32. A. Clair, M. Foucault, O. Calonne, Y. Lacroute, L. Markey, M. Salazar, V. Vignal, and E. Finot, Strain Mapping near a Triple Junction in Strained Ni-Based Alloy Using EBSD and Biaxial Nanogauges, Acta. Mater., 2011, 59, p 3116–3123

    Article  CAS  Google Scholar 

  33. Y. Cao and H.S. Di, Research on the Hot Deformation Behavior of a Fe-Ni-Cr Alloy (800H) at Temperatures above 1000 °C, J. Nucl. Mater., 2015, 465, p 104–115

    Article  CAS  Google Scholar 

  34. Y. Cao, H.S. Di, and R.D.K. Misra, The Impact of Aging Pre-Treatment on the Hot Deformation Behavior of Alloy 800H at 750 °C, J. Nucl. Mater., 2014, 452, p 77–86

    Article  CAS  Google Scholar 

  35. Y. Tian, Q. Li, Z.D. Wang, and G.D. Wang, Effects of Ultra Fast Cooling on Microstructure and Mechanical Properties of Pipeline Steels, J. Mater. Eng. Perform., 2015, 24, p 3307–3314

    Article  CAS  Google Scholar 

  36. L.Y. Lan, Z.Y. Chang, X.W. Kong, C.L. Qiu, and D.W. Zhao, Phase Transformation, Microstructure, and Mechanical Properties of X100 Pipeline Steels Based on TMCP and HTP Concepts, J. Mater. Sci., 2017, 52, p 1661–1678

    Article  CAS  Google Scholar 

  37. C.H. Song, H. Yu, L.L. Li, T. Zhou, J. Lu, and X.H. Liu, The Stability of Retained Austenite at Different Locations During Straining of I&Q&P Steel, Mater. Sci. Eng. A, 2016, 670, p 326–334

    Article  CAS  Google Scholar 

  38. C. Hofer, F. Winkelhofer, H. Clemens, and S. Primig, Morphology Change of Retained Austenite During Austempering of Carbide-Free Bainitic Steel, Mater. Sci. Eng. A, 2016, 664, p 236–246

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from Doctoral Scientific Research Foundation of Jiangsu University of Science and Technology (1062931702), National High Technology Research and Development Program of China (2015AA03A501), Natural Science Foundation of China (NSFC, 51305285, 51605203), and Natural Science Foundation of Jiangsu Province (BK20180984).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenguang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Chen, S., Gao, X. et al. Microstructure Evolution and Mechanical Property of Low-Alloy Steel Used for Armor Layer of Flexible Pipe During Thermomechanical Process and Hot Rolling Process. J. of Materi Eng and Perform 28, 107–116 (2019). https://doi.org/10.1007/s11665-018-3723-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3723-x

Keywords

Navigation