Skip to main content
Log in

Electrochemical Behavior of Mg-Al-Zn-Ga Alloy as Anode Materials in 3.5 wt.% NaCl Solution

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructure and electrochemical behaviors of Mg-Al-Zn and Mg-Al-Zn-Ga alloys as anode materials were investigated by morphology observation, composition analysis, phase identification, and electrochemical tests. The experimental results suggest that Ga alloying can refine the grains of the Mg-Al-Zn alloy by promoting second-phase segregation, which comprises Mg17Al12 and GaMg2. The comparison of discharge tests indicates that adding Ga to the Mg-Al-Zn alloy can negatively shift the discharge potential, provide a high current density, promote the formation of tiny and thin products, and improve the utilization efficiency. Meanwhile, the addition of Ga can increase the corrosion resistance of Mg-Al-Zn alloy because the Ga alloying promotes the segregation of the intermetallic phases in the Mg matrix. The intermetallic phases disperse in isolate states in the Mg matrix, resulting in their falling off from the substrate once their adjacent Mg is exhausted and subsequently ceasing the micro-galvanic corrosion. The Mg-Al-Zn-Ga alloy with higher corrosion resistance performs better discharge activity than that of Mg-Al-Zn alloy in 3.5 wt.% NaCl solution, implying that the Mg-Al-Zn-Ga alloy is a promising anode material for seawater-activated battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.R. Gopi, H.S. Nayaka, and S. Sahu, Investigation of Microstructure and Mechanical Properties of ECAP-Processed AM Series Magnesium Alloy, J. Mater. Eng. Perform., 2016, 25, p 3737–3745

    Article  CAS  Google Scholar 

  2. M. Yuasa, X. Huang, K. Suzuki, M. Mabuchi, and Y. Chino, Discharge Properties of Mg-Al-Mn-Ca and Mg-Al-Mn Alloys as Anode Materials for Primary Magnesium–Air Batteries, J. Power Sources, 2015, 297, p 449–456

    Article  CAS  Google Scholar 

  3. F.W. Richey, B.D. McCloskey, and A.C. Luntz, Mg Anode Corrosion in Aqueous Electrolytes and Implications for Mg–Air Batteries, J. Electrochem. Soc., 2016, 163, p 958–963

    Article  Google Scholar 

  4. H. Zhao, P. Bian, and D. Ju, Electrochemical Performance of Magnesium Alloy and Its Application on the Sea Water Battery, J. Environ. Sci-China, 2009, 21(Supplement 1), p 88–91

    Article  Google Scholar 

  5. H. Xiong, H. Zhu, J. Luo, K. Yu, C. Shi, H. Fang, and Y. Zhang, Effects of Heat Treatment on the Discharge Behavior of Mg-6 wt.%Al-1 wt.%Sn Alloy as Anode For Magnesium-Air Batteries, J. Mater. Eng. Perform., 2017, 26, p 1–11

    Article  Google Scholar 

  6. Y. Ma, N. Li, D. Li, M. Zhang, and X. Huang, Performance of Mg-14Li-1Al-0.1Ce as Anode for Mg–Air Battery, J. Power Sources, 2011, 196, p 2346–2350

    Article  CAS  Google Scholar 

  7. Y. Feng, R. Wang, K. Yu, C. Peng, J. Zhang, and C. Zhang, Activation of Mg-Hg Anodes by Ga in NaCl Solution, J. Alloys Compd., 2009, 473, p 215–219

    Article  CAS  Google Scholar 

  8. J. Zhao, K. Yu, Y. Hu, S. Li, X. Tan, F. Chen, and Z. Yu, Discharge Behavior of Mg-4 wt%Ga-2 wt%Hg Alloy as Anode for Seawater Activated Battery, Electrochim. Acta, 2001, 56, p 8224–8231

    Article  Google Scholar 

  9. D. Cao, L. Wu, G. Wang, and Y. Lv, Electrochemical Oxidation Behavior of Mg-Li-Al-Ce-Zn and Mg-Li-Al-Ce-Zn-Mn in Sodium Chloride Solution, J. Power Sources, 2008, 183, p 799–804

    Article  CAS  Google Scholar 

  10. J. Ma, J. Wen, J. Gao, and Q. Li, Performance of Al-0.5 Mg-0.02 Ga-0.1 Sn-0.5 Mn as Anode for Al–Air Battery in NaCl Solutions, J. Power Sources, 2014, 253, p 419–423

    Article  CAS  Google Scholar 

  11. S. Toriyama, T. Mae, and K. Arai, Effect of Ga Content on Localized Corrosion of Al-9 mass%Mg Alloys in H2SO4–NaCl Solution, Mater. Trans. JIM, 1998, 39, p 404–412

    Article  CAS  Google Scholar 

  12. Y. Feng, R.C. Wang, and C.Q. Peng, Influence of Alloying Elements Ga and Hg on Electrochemical Corrosion Behavior of Mg Solid Solution, Corrosion, 2011, 67, p 055003-1-055003-6.

    Article  Google Scholar 

  13. M. Anik and I.M. Guneşdoğdu, Corrosion Characteristics of Alloy AZ63 in Buffered Neutral Solutions, Mater. Design, 2010, 31, p 3100–3105

    Article  CAS  Google Scholar 

  14. H. Altun and S. Sen, Studies on the Influence of Chloride Ion Concentration and pH on the Corrosion and Electrochemical Behaviour of AZ63 Magnesium Alloy, Mater. Design, 2004, 25, p 637–643

    Article  CAS  Google Scholar 

  15. D. Cao, L. Wu, Y. Sun, G. Wang, and Y. Lv, Electrochemical Behavior of Mg-Li, Mg-Li-Al and Mg-Li-Al-Ce in Sodium Chloride Solution, J. Power Sources, 2008, 177, p 624–630

    Article  CAS  Google Scholar 

  16. A.R. Suresh Kannan, S. Muralidharan, K.B. Sarangapani, V. Balaramachandran, and V. Kapali, Corrosion and Anodic Behaviour of Zinc and Its Ternary Alloys in Alkaline Battery Electrolytes, J. Power Sources, 1995, 57, p 93–98

    Article  CAS  Google Scholar 

  17. Y. Li, T. Zhang, and F. Wang, Effect of Microcrystallization on Corrosion Resistance of AZ91D Alloy, Electrochim. Acta, 2006, 51, p 2845–2850

    Article  CAS  Google Scholar 

  18. E. Sikora and D.D. Macdonald, Nature of the Passive Film on Nickel, Electrochim. Acta, 2002, 48, p 69–77

    Article  CAS  Google Scholar 

  19. T. Zhang, Y. Li, and F. Wang, Roles of β Phase in the Corrosion Process of AZ91D Magnesium Alloy, Corros. Sci., 2006, 48, p 1249–1264

    Article  CAS  Google Scholar 

  20. J.R. Li, Q. Jiang, H. Sun, and Y. Li, Effect of Heat Treatment on Corrosion Behavior of AZ63 Magnesium Alloy in 3.5 wt.% Sodium Chloride Solution, Corros. Sci., 2016, 111, p 288–301

    Article  CAS  Google Scholar 

  21. Q.T. Jiang, J.R. Li, X.M. Ma, Y.T. Li, and B.R. Hou, The Relationship Between Microstructure and Corrosion Behaviors of Mg–3Y–xNd Alloys (x = 0.5, 1.0, 1.5 wt%), Mater. Corros., 2016, 67, p 876–881

    Article  CAS  Google Scholar 

  22. A.A. Nayeb-Hashemi and J.B. Clark, The Ga-Mg (Gallium-Magnesium) system, Bulletin of Alloy Phase Diagrams, 1985, 6.5, p 434-439.

    Article  CAS  Google Scholar 

  23. N. Wang et al., Discharge and Corrosion Behaviour of Mg-Li-Al-Ce-Y-Zn Alloy as the Anode for Mg–air Battery, Corros. Sci., 2016, 112, p 13–24

    Article  CAS  Google Scholar 

  24. N.G. Wang, R.C. Wang, C.Q. Peng, and Y. Feng, Effect of Manganese on Discharge and Corrosion Performance of Magnesium Alloy AP65 as Anode for Seawater-Activated Battery, Corrosion, 2012, 68, p 388–397

    Article  CAS  Google Scholar 

  25. Y. Lv, M. Liu, Y. Xu, D. Cao, J. Feng, R. Wu, and M. Zhang, The Electrochemical Behaviors of Mg-8Li-0.5Y and Mg-8Li-1Y Alloys in Sodium Chloride Solution, J. Power Sources, 2013, 239, p 265–268

    Article  CAS  Google Scholar 

  26. J.R. Li, K. Wan, Q. Jiang, H. Sun, Y. Li, B. Hou, L. Zhu, and M. Liu, Corrosion and Discharge Behaviors of Mg-Al-Zn and Mg-Al-Zn-In Alloys as Anode Materials, Metals, 2016, 6, p 1–14

    Google Scholar 

  27. J.G. Kim and S.J. Koo, Effect of Alloying Elements on Electrochemical Properties of Magnesium-Based Sacrificial Anodes, Corrosion, 2000, 56, p 380–388

    Article  CAS  Google Scholar 

  28. N. Wang, R. Wang, C. Peng, B. Peng, Y. Feng, and C. Hu, Discharge Behaviour of Mg-Al-Pb and Mg-Al-Pb-In Alloys as Anodes for Mg–Air Battery, Electrochim. Acta, 2014, 149, p 193–205

    Article  CAS  Google Scholar 

  29. G. Baril, C. Blanc, and N. Pebere, AC Impedance Spectroscopy in Characterizing Time-Dependent Corrosion of AZ91 and AM50 Magnesium Alloys Characterization with Respect to Their Microstructures, J. Electrochem. Soc., 2001, 148, p 489–496

    Article  Google Scholar 

  30. G.L. Song, A. Atrens, X.L. Wu, and B. Zhang, Corrosion Behaviour of AZ21, AZ501 and AZ91 in Sodium Chloride, Corros. Sci., 1998, 40, p 1769–1791

    Article  CAS  Google Scholar 

  31. G. Baril and N. Pébère, The Corrosion of Pure Magnesium in Aerated and Deaerated Sodium Sulphate Solutions, Corros. Sci., 2001, 43, p 471–484

    Article  CAS  Google Scholar 

  32. F. Zucchi, V. Grassi, A. Frignani, C. Monticelli, and G. Trabanelli, Electrochemical behaviour of a Magnesium Alloy Containing Rare Earth Elements, J. Appl. Electrochem., 2006, 36, p 195–204

    Article  CAS  Google Scholar 

  33. Y.Z. Lv, Y. Xu, and D.X. Cao, The Electrochemical Behaviors of Mg, Mg-Li-Al-Ce and Mg-Li-Al-Ce-Y in Sodium Chloride Solution, J. Power Sources, 2011, 196, p 8809–8814

    Article  CAS  Google Scholar 

  34. S.R. Morrison, Electrochemistry at semiconductor and oxidized metal electrodes, United States: N. p., 1980. Web.

  35. G.L. Song, A. Atrens, and M. Dargusch, Influence of Microstructure on the Corrosion of Diecast AZ91D, Corros. Sci., 1999, 41, p 249–273

    Article  CAS  Google Scholar 

  36. P.W. Chu and E.A. Marquis, Linking the Microstructure of a Heat-Treated WE43 Mg Alloy with its Corrosion Behavior, Corros. Sci., 2015, 101, p 94–104

    Article  CAS  Google Scholar 

  37. L. Wen, K. Yu, H. Xiong, Y. Dai, S. Yang, X. Qiao, F. Teng, and S. Fan, Composition Optimization and Electrochemical Properties of Mg-Al-Pb-(Zn) Alloys as Anodes for Seawater Activated Battery, Electrochim. Acta, 2016, 194, p 40–51

    Article  CAS  Google Scholar 

  38. Q. Liu, Z. Yan, E. Wang, S. Wang, and G. Sun, A High-Specific-Energy Magnesium/Water Battery for Full-Depth Ocean Application, Int. J. Hydrogen Energy, 2017, 42, p 23045–23053

    Article  CAS  Google Scholar 

  39. R. Hahn, J. Mainert, F. Glaw, and K.D. Lang, Sea Water Magnesium Fuel Cell Power Supply, J. Power Sources, 2015, 288, p 26–35

    Article  CAS  Google Scholar 

  40. G.L. Song and A. Atrens, Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance, Adv. Eng. Mater., 2003, 5, p 837–858

    Article  CAS  Google Scholar 

  41. G.L. Song, A. Atrens, Corrosion mechanisms of magnesium alloys, Adv. Eng. Mater., 1999, p 11-33.

    Article  CAS  Google Scholar 

  42. A. Atrens, M. Liu, and N.I.Z. Abidin, Corrosion Mechanism Applicable to Biodegradable Magnesium Implants, Mater. Sci. Eng. B-Adv., 2001, 176, p 1609–1636

    Article  Google Scholar 

  43. G.L. Song, A.L. Bowles, and D.H. StJohn, Corrosion Resistance of Aged Die Cast Magnesium Alloy AZ91D, Mat. Sci. Eng. A-Struct., 2004, 366, p 74–86

    Article  Google Scholar 

  44. R. Udhayan and D.P. Bhatt, On the Corrosion Behaviour of Magnesium and Its Alloys Using Electrochemical Techniques, J. Power Sources, 1996, 63, p 103–107

    Article  CAS  Google Scholar 

  45. T. Zhang, Y. Shao, G. Meng, Z. Cui, and F. Wang, Corrosion of Hot Extrusion AZ91 Magnesium Alloy: I-Relation Between the Microstructure and Corrosion Behavior, Corros. Sci., 2011, 53, p 1960–1968

    Article  CAS  Google Scholar 

  46. J. Chen, J. Wang, E. Han, J. Dong, and W. Ke, AC Impedance Spectroscopy Study of the Corrosion Behavior of an AZ91 Magnesium Alloy in 0.1 M Sodium Sulfate Solution, Electrochim. Acta, 2007, 52, p 3299–3309

    Article  CAS  Google Scholar 

  47. G.L. Makar and J. Kruger, Corrosion of Magnesium, Int. Mater. Rev., 1993, 38, p 138–153

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support of the Natural Science Foundation of ShanDong Province of China (Grant No. ZR2018BD025); National Natural Science Foundation of China (Grant No. 41576114); Qingdao Innovative Leading Talent Foundation (Grant No. 15-10-3-15-(39)-zch); and Qingdao Science and Technology Achievement Transformation Guidance Plan (Applied Basic Research, Grant No. 14-2-4-4-jch). And this work was also financially supported by State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, China (Project No. 614290101011703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuoyuan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Ma, X., Chen, Z. et al. Electrochemical Behavior of Mg-Al-Zn-Ga Alloy as Anode Materials in 3.5 wt.% NaCl Solution. J. of Materi Eng and Perform 27, 5460–5469 (2018). https://doi.org/10.1007/s11665-018-3635-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3635-9

Keywords

Navigation