Skip to main content
Log in

Experimental and Modeling Studies on the Microstructures and Properties of Oxidized Aluminum Nitride Ceramic Substrates

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Oxidation of aluminum nitride (AlN) ceramic substrates doped with 2 wt.% Y2O3 was performed in air at temperatures ranging from 1000 to 1300 °C for various lengths of time. Microstructure, bending strength, and thermal conductivity of the oxidized AlN substrates were studied experimentally and also via mathematical models. The results show that the oxide layer formed on the AlN substrates is composed of α-Al2O3 nanocrystallines and interconnected micropores. Longitudinal and transverse cracks are induced in the oxide layer under tensile and shear stresses, respectively. Intergranular oxidation of the AlN grains close to the oxide layer/AlN interface also occurs, leading to widening and cracking of the AlN grain boundaries. These processes result in the monotonous degradation of bending strength and thermal conductivity of the oxidized AlN substrates. Two mathematic models concerning these properties of the oxidized AlN substrates versus the oxide layer thickness were put forward. They fit well with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.A. Khor, L.G. Yu, and Y. Murakoshi, Spark Plasma Sintering of Sm2O3-doped Aluminum Nitride, J. Eur. Ceram. Soc., 2005, 25, p 1057–1065

    Article  Google Scholar 

  2. J. Schulz-Harder, Advantages and New Development of Direct Bonded Copper Substrates, Microelectron. Reliab., 2003, 43, p 359–365

    Article  Google Scholar 

  3. W. Grzesiak, P. MaćKów, T. Maj, B. Synkiewicz, K. Witek, R. Kisiel, M. Myśliwiec, J. Borecki, T. Serzysko, and M. Żupnik, Application of Direct Bonded Copper Substrates for Prototyping of Power Electronic Modules, Circuit World, 2016, 42, p 23–31

    Article  Google Scholar 

  4. W.M. Yim and R.J. Paff, Thermal Expansion of AlN, Sapphire, and Silicon, J. Appl. Phys., 1974, 45, p 1456–1457

    Article  Google Scholar 

  5. J. Zhan, Y. Cao, H. Zhang, J. Guo, J.H. Zhang, C.L. Geng, C.D. Shi, S. Cui, and W.M. Tang, Low-temperature Sintering of AlN Ceramics by Sm2O3-Y2O3-CaO Sintering Additives Formed via Decomposition of Nitrate Solutions, J. Mater. Eng. Perform., 2017, 26, p 453–459

    Article  Google Scholar 

  6. C.T. Yeh and W.H. Tuan, Accelerating the Oxidation Rate of AlN Substrate through the Addition of Water Vapor, J. Asian Ceram. Soc., 2017, 5, p 381–384

    Article  Google Scholar 

  7. C.T. Yeh and W.H. Tuan, Pre-oxidation of AlN Substrates for Subsequent Metallization, J. Mater. Sci.: Mater. Electron., 2015, 26, p 5910–5916

    Google Scholar 

  8. H.E. Kim and A.J. Moorhead, Oxidation Behavior and Flexural Strength of Aluminum Nitride Exposed to Air at Elevated Temperatures, J. Am. Ceram. Soc., 1994, 77, p 1037–1041

    Article  Google Scholar 

  9. C.W. Cao, Y.B. Feng, T. Qiu, and T. Liang, Surface Oxidation and Metallization of AlN Ceramics by Mo-Mn Process, J. Syn. Cryst., 2017, 46, p 416–421

    Google Scholar 

  10. C.T. Yeh and W.H. Tuan, Oxidation Mechanism of Aluminum Nitride Revisited, J. Adv. Ceram., 2017, 6, p 27–32

    Article  Google Scholar 

  11. C. Xu and W. Gao, Pilling–Bedworth Ratio for Oxidation of Alloys, Mater. Res. Innov., 2000, 3, p 231–235

    Article  Google Scholar 

  12. E.W. Osborne and M.G. Norton, Oxidation of Aluminium Nitride [J], J. Mater. Sci., 1998, 33, p 3859–3865

    Article  Google Scholar 

  13. M.D. Drory, M.D. Thouless, and A.G. Evans, On the Decohesion of Residually Stressed Thin Films, Acta Metall., 1988, 36, p 2019–2028

    Article  Google Scholar 

  14. M.D. Drory and A.G. Evans, Experimental Observations of Substrate Fracture Caused by Residually Stressed Films, J. Am. Ceram. Soc., 1990, 73, p 634–638

    Article  Google Scholar 

  15. C.W. Cao, Y.B. Feng, T. Qiu, J. Yang, X.Y. Li, T. Liang, and J. Li, Effects of Isothermal Annealing on the Oxidation Behavior, Mechanical and Thermal Properties of AlN Ceramics, Ceram. Int., 2017, 43, p 9334–9342

    Article  Google Scholar 

  16. R.C. West, CRC Handbook of Chemistry and Physics, CPC Press Inc, Boca Raton, 1982

    Google Scholar 

  17. J.Y. Wu, F. Chen, Q. Shen, and L.M. Zhang, Effect of Thermal Conductivity and Analytical Calculation Method of Effective Thermal Conductivity for Porous Ceramics, Adv. Ceram., 2011, 4, p 13–16

    Google Scholar 

  18. D.A.G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen: I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen, Ann. der Phys., 1935, 416, p 160–178

    Article  Google Scholar 

  19. R. Landauer, The Electrical Resistance of Binary Metallic Mixtures, J. Appl. Phys., 1952, 23, p 779–784

    Article  Google Scholar 

  20. Z.D. Guan, Z.T. Zhang, and J.S. Jiao, Physical Properties of Inorganic Materials, 2nd ed., Tsinghua University Press, Beijing, 2011

    Google Scholar 

  21. G. Ji, Z. Chen, M.L. Wang, A. Addad, D. Schryvers, and H.W. Wang, Fabrication, Interface Characterization and Modeling of Oriented Graphite Flakes/Si/Al Composites for Thermal Management Applications, Mater. Des., 2014, 63, p 719–728

    Article  Google Scholar 

  22. H.V. Truong and G.E. Zinsmeister, Experimental Study of Heat Transfer in Layered Composites, Int. J. Heat Mass Trans., 1978, 21, p 905–909

    Article  Google Scholar 

  23. R.C. Progelhof, J.L. Throne, and R.R. Ruetsch, Methods for Predicting the Thermal Conductivity of Composite Systems: A Review, Polym. Eng. Sci., 1976, 16, p 615–625

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Projects of Scientific and Technological Research, Anhui Province, China (Grants Nos. 15czz02047, 1604a0902162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenming Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Xu, H., Zhan, J. et al. Experimental and Modeling Studies on the Microstructures and Properties of Oxidized Aluminum Nitride Ceramic Substrates. J. of Materi Eng and Perform 27, 3297–3303 (2018). https://doi.org/10.1007/s11665-018-3415-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3415-6

Keywords

Navigation