Skip to main content

Advertisement

Log in

The Effect of Titanium Dioxide (TiO2) Nanoparticles on Hydroxyapatite (HA)/TiO2 Composite Coating Fabricated by Electrophoretic Deposition (EPD)

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Composite coatings of Hydroxyapatite (HA) with ceramics, polymers and metals are used to modify the surface structure of implants. In this research, HA/TiO2 composite coating was fabricated by electrophoretic deposition (EPD) on 316 stainless steel substrate. HA/TiO2 composite coatings with 5, 10 and 20 wt.% of TiO2, deposited at 40 V and 90 s as an optimum condition. The samples coated at this condition led to an adherent, continuous and crack-free coating. The influence of TiO2 content was studied by performing different characterization methods such as scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), corrosion resistance in simulated body fluid (SBF), coating’s dissolution rate in physiological solution and bond strength to the substrate. The results showed that the higher amount of TiO2 in the composite coating led to increase in bond strength of coating to stainless steel substrate from 3 MPa for HA coating to 5.5 MPa for HA-20 wt.% TiO2 composite coating. In addition, it caused to reduction of corrosion current density of samples in the SBF solution from 18.92 μA/cm2 for HA coating to 6.35 μA/cm2 for HA-20 wt.% TiO2 composite coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.B. Park and J.D. Bronzino, Biomaterials: Principles and Applications, CRC Press, Boca Raton, 2002, https://doi.org/10.1007/s13398-014-0173-7.2

    Book  Google Scholar 

  2. K.C. Dee, D.A. Puleo, and R. Bizios, An Introduction to Tissue-Biomaterial Interactions, Wiley, New York, 2003

    Google Scholar 

  3. H. Xu, X. Geng, G. Liu, J. Xiao, D. Li, Y. Zhang, P. Zhu, and C. Zhang, Deposition, Nanostructure and Phase Composition of Suspension Plasma-Sprayed Hydroxyapatite Coatings, Ceram. Int., 2016, 42, p 8684–8690. https://doi.org/10.1016/j.ceramint.2016.02.102

    Article  Google Scholar 

  4. E.S. Bogya, Z. Károly, and R. Barabás, Atmospheric Plasma Sprayed Silica-Hydroxyapatite Coatings on Magnesium Alloy Substrates, Ceram. Int., 2015, 41, p 6005–6012. https://doi.org/10.1016/j.ceramint.2015.01.041

    Article  Google Scholar 

  5. P. Rajesh, N. Mohan, Y. Yokogawa, and H. Varma, Pulsed Laser Deposition of Hydroxyapatite on Nanostructured Titanium Towards Drug Eluting Implants, Mater. Sci. Eng. C, 2013, 33, p 2899–2904. https://doi.org/10.1016/j.msec.2013.03.013

    Article  Google Scholar 

  6. D. Sidane, D. Chicot, S. Yala, S. Ziani, H. Khireddine, A. Iost, and X. Decoopman, Study of the Mechanical Behavior and Corrosion Resistance of Hydroxyapatite Sol-Gel Thin Coatings on 316 L Stainless Steel Pre-coated with Titania Film, Thin Solid Films, 2015, 593, p 71–80. https://doi.org/10.1016/j.tsf.2015.09.037

    Article  Google Scholar 

  7. S. Ramesh, A.N. Natasha, C.Y. Tan, L.T. Bang, A. Niakan, J. Purbolaksono, H. Chandran, C.Y. Ching, S. Ramesh, and W.D. Teng, Characteristics and Properties of Hydoxyapatite Derived by Sol-Gel and Wet Chemical Precipitation Methods, Ceram. Int., 2015, https://doi.org/10.1016/j.ceramint.2015.04.105

    Google Scholar 

  8. M.A. Surmeneva and R.A. Surmenev, Microstructure Characterization and Corrosion Behaviour of a Nano-hydroxyapatite Coating Deposited on AZ31 Magnesium Alloy Using Radio Frequency Magnetron Sputtering, Vacuum., 2015, 117, p 60–62. https://doi.org/10.1016/j.vacuum.2015.04.004

    Article  Google Scholar 

  9. A. Molaei, M. Yari, and M.R. Afshar, Modification of Electrophoretic Deposition of Chitosan-Bioactive Glass-Hydroxyapatite Nanocomposite Coatings for Orthopedic Applications by Changing Voltage and Deposition Time, Ceram. Int., 2015, 41, p 14537–14544. https://doi.org/10.1016/j.ceramint.2015.07.170

    Article  Google Scholar 

  10. A. Tahmasbi Rad, M. Solati-Hashjin, N.A.A. Osman, and S. Faghihi, Improved Bio-Physical Performance of Hydroxyapatite Coatings Obtained by Electrophoretic Deposition at Dynamic Voltage, Ceram. Int., 2014, 40, p 12681–12691. https://doi.org/10.1016/j.ceramint.2014.04.116

    Article  Google Scholar 

  11. Y. Huang, Y. Yan, and X. Pang, Electrolytic Deposition of Fluorine-Doped Hydroxyapatite/ZrO2 Films on Titanium for Biomedical Applications, Ceram. Int., 2013, 39, p 245–253. https://doi.org/10.1016/j.ceramint.2012.06.017

    Article  Google Scholar 

  12. H. Te Chen, H.Y. Shu, C.J. Chung, and J.L. He, Assessment of Bone Morphogenic Protein and Hydroxyapatite-Titanium Dioxide Composites for Bone Implant Materials, Surf. Coat. Technol., 2015, 276, p 168–174. https://doi.org/10.1016/j.surfcoat.2015.06.056

    Article  Google Scholar 

  13. X.F. Xiao, R.F. Liu, and Y.Z. Zheng, Characterization of Hydroxyapatite/Titania Composite Coatings Codeposited by a Hydrothermal-Electrochemical Method on Titanium, Surf. Coat. Technol., 2006, 200, p 4406–4413. https://doi.org/10.1016/j.surfcoat.2005.02.205

    Article  Google Scholar 

  14. A. Kobayashi and W. Jiang, Properties of Titania/Hydroxyapatite Nanostructured Coating Produced by Gas Tunnel Type Plasma Spraying, 2009, 83, p 86–91. https://doi.org/10.1016/j.vacuum.2008.03.070

    Google Scholar 

  15. X.F. Xiao and R.F. Liu, Effect of Suspension Stability on Electrophoretic Deposition of Hydroxyapatite Coatings, Mater. Lett., 2006, 60, p 2627–2632. https://doi.org/10.1016/j.matlet.2006.01.048

    Article  Google Scholar 

  16. V.F.C. de Lins, G.F. de Andrade Reis, C.R. de Araujo, T. Matencio, V. De Freitas, C. Lins, G. Francisco, D.A. Reis, C. Roberto, D. Araujo, and T. Matencio, Electrochemical Impedance Spectroscopy and Linear Polarization Applied to Evaluation of Porosity of Phosphate Conversion Coatings on Electrogalvanized Steels, Appl. Surf. Sci., 2006, 253, p 2875–2884. https://doi.org/10.1016/j.apsusc.2006.06.030

    Article  Google Scholar 

  17. T. Kokubo and H. Takadama, How Useful is SBF in Predicting in Vivo Bone Bioactivity?, Biomaterials, 2006, 27, p 2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  Google Scholar 

  18. ASTM, ASTM D4541-09, Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion, ASTM Int., 2014, https://doi.org/10.1520/d4541-09e01.2

    Google Scholar 

  19. M. Yaszemski and D.J. Trantolo, Biomaterials in Orthopedics, CRC Press, Boca Raton, 2003

    Book  Google Scholar 

  20. Y.X. Pang and X. Bao, Influence of Temperature, Ripening Time and Calcination on the Morphology and Crystallinity of Hydroxyapatite Nanoparticles, J. Eur. Ceram. Soc., 2003, 23, p 1697–1704. https://doi.org/10.1016/s0955-2219(02)00413-2

    Article  Google Scholar 

  21. B.D. Ratner, A.S. Hoffman, F.J. Schoen, and J.E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine, Academic Press, Amsterdam, 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Amirnejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirnejad, M., Afshar, A. & Salehi, S. The Effect of Titanium Dioxide (TiO2) Nanoparticles on Hydroxyapatite (HA)/TiO2 Composite Coating Fabricated by Electrophoretic Deposition (EPD). J. of Materi Eng and Perform 27, 2338–2344 (2018). https://doi.org/10.1007/s11665-018-3342-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3342-6

Keyword

Navigation