Skip to main content
Log in

Analyses of Small Punch Creep Deformation Behavior of 316LN Stainless Steel Having Different Nitrogen Contents

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The small punch creep (SPC) behavior of 316LN stainless steel (SS) containing 0.07, 0.11 and 0.14 wt.% nitrogen has been investigated at 923 K. The transient and tertiary SPC deformation of 316LN SS with various nitrogen contents have been analyzed according to the equation proposed for SPC deflection, \(\delta = \delta_{0} + \delta_{\text{T}} (1 - e^{ - \kappa t} ) + \dot{\delta }_{\text{s}} t + \delta_{3} e^{{\left[ {\varphi \left( {t - t_{\text{r}} } \right)} \right]}}\). The relationships among the rate of exhaustion of transient creep (κ), steady-state deflection rate (\(\dot{\delta }_{\text{s}}\)) and the rate of acceleration of tertiary creep (φ) revealed the interrelationships among the three stages of SPC curve. The first-order reaction rate theory was found to be applicable to SPC deformation throughout the transient as well as tertiary region, in all the investigated steels. The initial and final creep deflection rates were decreased, whereas time to attain steady-state deflection rate increased with the increase in nitrogen content. By increasing the nitrogen content in 316LN SS from 0.07 to 0.14 wt.%, each stage of SPC was prolonged, and consequently, the values of κ, \(\dot{\delta }_{\text{s}}\) and φ were lowered. Using the above parameters, the master curves for both transient and tertiary SPC deflections were constructed for 316LN SS containing different nitrogen contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. M.P. Manahan, A.S. Argon, and O.K. Harling, The Development of a Miniaturized Disk Bend Test for the Determination of Postirradiation Mechanical Properties, J. Nucl. Mater., 1981, 103, p 1545–1550

    Article  Google Scholar 

  2. J.M. Baik, J. Kameda, and O. Buck, Small Punch Test Evaluation of Intergranular Embrittlement of an Alloy Steel, Scr. Metall., 1983, 17, p 1443–1447

    Article  Google Scholar 

  3. G.E. Lucas, The Development of Small Specimen Mechanical Test Techniques, J. Nucl. Mater., 1983, 117, p 327–339

    Article  Google Scholar 

  4. X. Mao and H. Takahashi, Development of a Further Miniaturized Specimen of 3 mm Diameter for TEM Disk (Φ 3 mm) Small Punch Tests, J. Nucl. Mater., 1987, 150, p 42–52

    Article  Google Scholar 

  5. J.D. Parker, G.C. Stratford, N. Shaw, G. Spink, and H. Metcalfe, The Application of Miniature Disc Testing for the Assessment of Creep Damage in CrMoV Rotor Steel’, in: S. Hietanen, P. Auerkari (eds.) BALTICA IV Plant Maintenance and Managing Life & Performance, Vol. 2, Helsinki, 1998

  6. S. Tettamanti and R. Crudeli, Small punch creep test, ‘Small punch creep test A promising methodology for high temperature plant components life evaluation’, in: S. Hietanen, P. Auerkari (eds.) BALTICA IV Plant Maintenance and Managing Life & Performance, Vol. 2, Helsinki, 1998

  7. B. Ule, T. Sustar, F. Dobes, K. Milicka, V. Bicego, S. Tettamanti, K. Maile, C. Schwarzkopf, M.P. Whelan, R.H. Kozlowski, and J. Klaput, Small Punch Test Method Assessment for the Determination of the Residual Creep Life of Service Exposed Components: Outcomes from an Interlaboratory Exercise, Nucl. Eng. Des., 1999, 192, p 1–11

    Article  Google Scholar 

  8. S. Komazaki, T. Hashida, T. Shoji, and K. Suzuki, Development of Small Punch Tests for Creep Property Measurement of Tungsten Alloyed 9% Cr Ferritic Steels, J. Test. Eval., 2000, 28, p 249–256

    Article  Google Scholar 

  9. F. Dobes and K. Milicka, On the Monkman–Grant Relation for Small Punch Test Data, Mater. Sci. Eng. A, 2002, 336, p 245–248

    Article  Google Scholar 

  10. S. Komazaki, T. Sugimoto, Y. Hasegawa, and Y. Kohno, Damage Evaluation of a Welded Joint in a Long Term Service Exposed Boiler by Using a Small Punch Creep Test, ISIJ Int., 2007, 47, p 1228–1233

    Article  Google Scholar 

  11. T. Izaki, T. Kobayashi, J. Kusumoto, and A. Kanaya, A Creep Life Assessment Method for Boiler Pipes Using Small Punch Creep Test, Int. J. Press. Vessels Pip., 2009, 86, p 637–642

    Article  Google Scholar 

  12. B. Gulcimen and P. Hahner, Determination of Creep Properties of a P91 Weldment by Small Punch Testing and a New Evaluation Approach, Mater. Sci. Eng. A, 2013, 588, p 125–131

    Article  Google Scholar 

  13. Z. Li and R. Sturm, Small Punch Test for Weld Heat Affected Zones, Mater. High Temp., 2006, 23, p 225–232

    Article  Google Scholar 

  14. B.J. Kim, Y.B. Sim, J.H. Lee, M.K. Kim, and B.S. Lim, Application of Small Punch Creep Test for Inconel 617 Alloy Weldment, Eng. Proc., 2011, 10, p 2579–2584

    Article  Google Scholar 

  15. G.A. Webster, A.P.D. Cox, and J.E. Dorn, A Relationship Between Transient and Steady State Creep at Elevated Temperatures, Met. Sci. J., 1969, 3, p 221–225

    Article  Google Scholar 

  16. F. Garofalo, Fundamentals of Creep and Creep Rupture in Metals, MacMilan, New York, 1965

    Google Scholar 

  17. W.J. Evans and B. Wilshire, The High Temperature Creep and Fracture Behavior of 70-30 Alpha Brass, Metall. Trans., 1970, 1, p 2133–2139

    Article  Google Scholar 

  18. F. Dobes and J. Cadek, Contribution to the Analysis of Time Dependences of Creep, Kov. Mater., 1981, 19, p 31–40

    Google Scholar 

  19. F. Dobes and K. Milicka, Application of Small Punch Creep Testing in Assessment of Creep Life Time, Mater. Sci. Eng. A, 2009, 510, p 440–443

    Article  Google Scholar 

  20. F. Dobes, K. Milicka, and P. Kratochvil, Small Punch Creep in Fe28Al3Cr0.02Ce Alloy, Intermetallics, 2004, 12, p 1397–1401

    Article  Google Scholar 

  21. F. Hou, H. Xu, Y. Wang, and L. Zhang, Determination of Creep Property of 1.25Cr0.5Mo Pearlitic Steels by Small Punch Test, Eng. Fail. Anal., 2013, 28, p 215–221

    Article  Google Scholar 

  22. J. Ganesh Kumar, V. Ganesan, and K. Laha, Analyses of Transient and Tertiary Small Punch Creep Deformation of 316LN Stainless Steel, Metall. Mater. Trans. A, 2016, 47, p 4484–4493

    Article  Google Scholar 

  23. M.D. Mathew, K. Laha, and V. Ganesan, Improving Creep Strength of 316L Stainless Steel by Alloying with Nitrogen, Mater. Sci. Eng. A, 2012, 535, p 76–83

    Article  Google Scholar 

  24. J. Ganesh Kumar, M. Chowdary, V. Ganesan, M.D. Mathew, R.K. Paretkar, and K. Bhanu Sankara Rao, High Temperature Design Curves for High Nitrogen Grades of 316LN Stainless Steel, Nucl. Eng. Des., 2010, 240, p 1363–1370

    Article  Google Scholar 

  25. M.D. Mathew, J. Ganesh Kumar, V. Ganesan, and K. Laha, Small Punch Creep Studies for Optimization of Nitrogen Content in 316LN SS for Enhanced Creep Resistance, Metall. Mater. Trans., 2014, 45A, p 731–737

    Article  Google Scholar 

  26. A.F. Padilha, D.M. Escriba, E. Materna Morris, M. Rieth, and M. Klimenkov, Precipitation in AISI, 316L(N) During Creep Tests at 550 and 600°C Up To 10 Years, J. Nucl. Mater., 2007, 362, p 132–138

    Article  Google Scholar 

  27. J.W. Simmons, Influence of Nitride (Cr2N) Precipitation on the Plastic Flow Behavior of High Nitrogen Austenitic Stainless Steel, Scr. Metall. Mater., 1995, 32, p 265–270

    Article  Google Scholar 

  28. M.O. Speidel, Properties and Applications of High Nitrogen Steels: Austenites and Duplex, in: J. Foct, A. Henry (eds.) Proceedings International Conference on High nitrogen steels, HNS 88, France. The Institute of metals, London, 1989, p 92

  29. W.J. Evans and B. Wilshire, Transient and Steady State Creep Behavior of Nickel, Zinc and Iron, Trans. Met. Soc. AIME, 1968, 242, p 1303–1307

    Google Scholar 

  30. C. Phaniraj, M. Nandagopal, S.L. Mannan, and P. Rodriguez, The Relationship Between Transient and Steady State Creep in AISI, 304 Stainless Steel, Acta Metall. Mater., 1991, 39, p 1651–1656

    Article  Google Scholar 

  31. C. Phaniraj, M. Nandagopal, S.L. Mannan, P. Rodriguez, and B.P. Kashyap, Analysis of First Order Kinetics for Tertiary Creep in AISI, 304 Stainless Steel, Acta Mater., 1996, 44, p 4059–4069

    Article  Google Scholar 

  32. B.K. Choudhary, C. Phaniraj, K. Bhanu Sankara Rao, and S.L. Mannan, Creep Deformation Behaviour and Kinetic Aspects of 9Cr-1Mo Ferritic Steel, ISIJ Int., 2001, 41, p S73–S80

    Article  Google Scholar 

  33. J. Vanaja and K. Laha, Assessment of Tungsten Content on Tertiary Creep Deformation Behavior of Reduced Activation Ferritic Martensitic Steel, Metall. Mater. Trans. A, 2015, 46, p 4669–4679

    Article  Google Scholar 

  34. R.E. Schramm and R.P. Reed, Stacking Fault Energies of Seven Commercial Austenitic Stainless Steels, Met. Trans., 1975, 6A, p 1345

    Article  Google Scholar 

  35. V. Ganesan, M.D. Mathew, P. Parameswaran, and K. Bhanu Sankara Rao, Creep Strengthening of Low Carbon Grade Type 316LN Stainless Steel by Nitrogen, Trans. Indian Inst. Met., 2010, 63, p 417–421

    Article  Google Scholar 

  36. D. Sidey and B. Wilshire, Mechanism of Creep and Recovery in Nimonic 80A, Met. Sci. J., 1969, 3, p 56

    Article  Google Scholar 

  37. V. Ganesan, K. Laha, M. Nandagopal, P. Parameswaran, and M.D. Mathew, Effect of Nitrogen Content on Dynamic Strain Ageing Behaviour of Type 316LN Austenitic Stainless Steel During Tensile Deformation, Mater. High Temp., 2014, 31, p 162–170

    Article  Google Scholar 

  38. G. Sasikala, M.D. Mathew, K. Bhanu Sankara Rao, and S.L. Mannan, Creep Deformation and Fracture Behaviour of a Nitrogen Bearing Type 316 Stainless Steel Weld Metal, J. Nucl. Mater., 1999, 273, p 257–264

    Article  Google Scholar 

  39. M. Nandagopal, V. Ganesan, and K. Laha, Effect of Nitrogen on Primary and Steady State Creep Deformation Behaviour of 316LN Austenitic Stainless Steel, Trans. Indian Inst. Met., 2017, 70, p 783–790

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their deep sense of gratitude to Dr. M.D. Mathew, former head, Mechanical Metallurgy division, for initiating this research work. The support received from Dr. G. Amarendra, Scientist-in-charge, UGC-DAE-CSR Kalpakkam Node, is gratefully acknowledged. The authors sincerely thank the technical support received from Dr. S. Ravi and Mrs. J. Vanaja, Mechanical Metallurgy Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ganesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesh Kumar, J., Laha, K., Ganesan, V. et al. Analyses of Small Punch Creep Deformation Behavior of 316LN Stainless Steel Having Different Nitrogen Contents. J. of Materi Eng and Perform 27, 2545–2555 (2018). https://doi.org/10.1007/s11665-018-3341-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3341-7

Keywords

Navigation