Advertisement

Residual Stress Distribution and Microstructure of a Multiple Laser-Peened Near-Alpha Titanium Alloy

  • A. Umapathi
  • S. Swaroop
Article
  • 136 Downloads

Abstract

Laser peening without coating (LPwC) was performed on a Ti-2.5 Cu alloy with multiple passes (1, 3 and 5), using a Nd:YAG laser (1064 nm) at a constant overlap rate of 70% and power density of 6.7 GW cm−2. Hardness and residual stress profiles indicated thermal softening near the surface (< 100 μm) and bulk softening due to adiabatic heating. Maximum hardness (235 HV at 500 μm) and maximum residual stress (− 890 MPa at 100 μm) were observed for LPwC with 1 pass. Surface roughness and surface 3-D topography imaging showed that the surface roughness increased with the increase in the number of passes. XRD results indicated no significant β phases. However, peak shifts, broadening and asymmetry were observed and interpreted based on dislocation activity. Microstructures indicated no melting or resolidification or refinement of grains at the surface. Twin density was found to increase with the increase in the number of passes.

Keywords

laser peening without coating microhardness multiple peening residual stress titanium alloy twinning 

Notes

Acknowledgment

We thank DST-SERB, India (Grant No. SB/S3/ME/36/2013), for the financial support, VIT University for the infrastructure and constant support throughout the project and National Facility of OIM and Texture at IIT Bombay for the residual stress measurements.

References

  1. 1.
    E. Maawad, H.G. Brokmeier, L. Wagner, Y. Sano, and C. Genzel, Investigation on the Surface and Near-Surface Characteristics of Ti-2.5Cu After Various Mechanical Surface Treatments, Surf. Coat. Technol., 2011, 205(12), p 3644–3650.  https://doi.org/10.1016/j.surfcoat.2011.01.001 CrossRefGoogle Scholar
  2. 2.
    T. Venugopal, K. Prasad Rao, and B.S. Murty, Mechanical and Electrical Properties of Cu-Ta Nanocomposites Prepared by High-Energy Ball Milling, Acta Mater., 2007, 55(13), p 4439–4445.  https://doi.org/10.1016/j.actamat.2007.04.025 CrossRefGoogle Scholar
  3. 3.
    J. Lindemann, C. Buque, and F. Appel, Effect of Shot Peening on Fatigue Performance of a Lamellar Titanium Aluminide Alloy, Acta Mater., 2006, 54(4), p 1155–1164.  https://doi.org/10.1016/j.actamat.2005.10.043 CrossRefGoogle Scholar
  4. 4.
    Y. Lin, J. Lu, L. Wang, T. Xu, and Q. Xue, Surface Nanocrystallization by Surface Mechanical Attrition Treatment and Its Effect on Structure and Properties of Plasma Nitrided AISI, 321 Stainless Steel, Acta Mater., 2006, 54(20), p 5599–5605.  https://doi.org/10.1016/j.actamat.2006.08.014 CrossRefGoogle Scholar
  5. 5.
    J.Z. Lu, K.Y. Luo, Y.K. Zhang, C.Y. Cui, G.F. Sun, J.Z. Zhou, L. Zhang, J. You, K.M. Chen, and J.W. Zhong, Grain Refinement of LY2 Aluminum Alloy Induced by Ultra-High Plastic Strain During Multiple Laser Shock Processing Impacts, Acta Mater., 2010, 58(11), p 3984–3994.  https://doi.org/10.1016/j.actamat.2010.03.026 CrossRefGoogle Scholar
  6. 6.
    A. Telang, A.S. Gill, S. Teysseyre, S.R. Mannava, D. Qian, and V.K. Vasudevan, Effects of Laser Shock Peening on SCC Behavior of Alloy 600 in Tetrathionate Solution, Corros. Sci., 2015, 90, p 434–444.  https://doi.org/10.1016/j.corsci.2014.10.045 CrossRefGoogle Scholar
  7. 7.
    Y. Sano, M. Obata, T. Kubo, N. Mukai, M. Yoda, K. Masaki, and Y. Ochi, Retardation of Crack Initiation and Growth in Austenitic Stainless Steels by Laser Peening Without Protective Coating, Mater. Sci. Eng. A, 2006, 417(1), p 334–340.  https://doi.org/10.1016/j.msea.2005.11.017 CrossRefGoogle Scholar
  8. 8.
    Y. Sano, Laser Peening Without Coating as a Surface Enhancement Technology, J. Laser MicroNanoeng., 2006, 1(3), p 161CrossRefGoogle Scholar
  9. 9.
    D. Karthik, S. Kalainathan, and S. Swaroop, Surface Modification of 17-4 PH Stainless Steel by Laser Peening Without Protective Coating Process, Surf. Coat. Technol., 2015, 278, p 138–145.  https://doi.org/10.1016/j.surfcoat.2015.08.012 CrossRefGoogle Scholar
  10. 10.
    D. Karthik and S. Swaroop, Laser Peening Without Coating Induced Phase Transformation and Thermal Relaxation of Residual Stresses in AISI, 321 Steel, Surf. Coat. Technol., 2016, 291, p 161–171.  https://doi.org/10.1016/j.surfcoat.2016.02.038 CrossRefGoogle Scholar
  11. 11.
    D. Karthik and S. Swaroop, Influence of Laser Peening on Phase Transformation and Corrosion Resistance of AISI, 321 Steel, J. Mater. Eng. Perform., 2016, 25(7), p 2642–2650.  https://doi.org/10.1007/s11665-016-2158-5 CrossRefGoogle Scholar
  12. 12.
    A. Umapathi and S. Swaroop, Residual Stress Distribution in a Laser Peened Ti-2.5Cu Alloy, Surf. Coat. Technol., 2016, 307, p 38–46.  https://doi.org/10.1016/j.surfcoat.2016.08.053 CrossRefGoogle Scholar
  13. 13.
    D. Karthik and S. Swaroop, Laser Shock Peening Enhanced Corrosion Properties in a Nickel Based Inconel 600 Superalloy, J. Alloys Compd., 2017, 694, p 1309–1319.  https://doi.org/10.1016/j.jallcom.2016.10.093 CrossRefGoogle Scholar
  14. 14.
    D. Karthik, S. Swaroop, Laser Peening Without Coating—An Advanced Surface Treatment: A Review. Mater. Manuf. Process., 2017, 32(14), p 1565–1572.  https://doi.org/10.1080/10426914.2016.1221095 CrossRefGoogle Scholar
  15. 15.
    G. Gomez-Rosas, C. Rubio-Gonzalez, J.L. Ocaña, C. Molpeceres, J.A. Porro, W. Chi-Moreno, and M. Morales, High Level Compressive Residual Stresses Produced in Aluminum Alloys by Laser Shock Processing, Appl. Surf. Sci., 2005, 252(4), p 883–887.  https://doi.org/10.1016/j.apsusc.2005.01.150 CrossRefGoogle Scholar
  16. 16.
    S. Sathyajith, S. Kalainathan, and S. Swaroop, Laser Peening Without Coating on Aluminum Alloy Al-6061-T6 Using Low Energy Nd:YAG Laser, Opt. Laser Technol., 2013, 45, p 389–394.  https://doi.org/10.1016/j.optlastec.2012.06.019 CrossRefGoogle Scholar
  17. 17.
    S. Huang, J.Z. Zhou, J. Sheng, J.Z. Lu, G.F. Sun, X.K. Meng, L.D. Zuo, H.Y. Ruan, and H.S. Chen, Effects of Laser Energy on Fatigue Crack Growth Properties of 6061-T6 Aluminum Alloy Subjected to Multiple Laser Peening, Eng. Fract. Mech., 2013, 99, p 87–100.  https://doi.org/10.1016/j.engfracmech.2013.01.011 CrossRefGoogle Scholar
  18. 18.
    E. Maawad, Y. Sano, L. Wagner, H.G. Brokmeier, and C. Genzel, Investigation of Laser Shock Peening Effects on Residual Stress State and Fatigue Performance of Titanium Alloys, Mater. Sci. Eng. A, 2012, 536, p 82–91.  https://doi.org/10.1016/j.msea.2011.12.072 CrossRefGoogle Scholar
  19. 19.
    Y.B. Guo and R. Caslaru, Fabrication and Characterization of Micro Dent Arrays Produced by Laser Shock Peening on Titanium Ti-6Al-4V Surfaces, J. Mater. Process. Technol., 2011, 211(4), p 729–736.  https://doi.org/10.1016/j.jmatprotec.2010.12.007 CrossRefGoogle Scholar
  20. 20.
    R.K. Nalla, I. Altenberger, U. Noster, G.Y. Liu, B. Scholtes, and R.O. Ritchie, On the Influence of Mechanical Surface Treatments—Deep Rolling and Laser Shock Peening—On the Fatigue Behavior of Ti-6Al-4V at Ambient and Elevated Temperatures, Mater. Sci. Eng. A, 2003, 355(1), p 216–230.  https://doi.org/10.1016/S0921-5093(03)00069-8 CrossRefGoogle Scholar
  21. 21.
    J.Z. Lu, K.Y. Luo, Y.K. Zhang, G.F. Sun, Y.Y. Gu, J.Z. Zhou, X.D. Ren, X.C. Zhang, L.F. Zhang, K.M. Chen, C.Y. Cui, Y.F. Jiang, A.X. Feng, and L. Zhang, Grain Refinement Mechanism of Multiple Laser Shock Processing Impacts on ANSI, 304 Stainless Steel, Acta Mater., 2010, 58(16), p 5354–5362.  https://doi.org/10.1016/j.actamat.2010.06.010 CrossRefGoogle Scholar
  22. 22.
    Z. Zhou, A.S. Gill, D. Qian, S.R. Mannava, K. Langer, Y. Wen, and V.K. Vasudevan, A Finite Element Study of Thermal Relaxation of Residual Stress in Laser Shock Peened IN718 Superalloy, Int. J. Impact Eng., 2011, 38(7), p 590–596.  https://doi.org/10.1016/j.ijimpeng.2011.02.006 CrossRefGoogle Scholar
  23. 23.
    J.J. Ruschau, R. John, S.R. Thompson, and T. Nicholas, Fatigue Crack Nucleation and Growth Rate Behavior of Laser Shock Peened Titanium, Int. J. Fatigue, 1999, 21, p S199–S209.  https://doi.org/10.1016/S0142-1123(99)00072-9 CrossRefGoogle Scholar
  24. 24.
    S. Spanrad and J. Tong, Characterization of Foreign Object Damage (FOD) and Early Fatigue Crack Growth in Laser Shock Peened Ti-6AL-4V Aerofoil Specimens, Mater. Sci. Eng. A, 2011, 528, p 2128–2136.  https://doi.org/10.1016/j.msea.2010.11.045 CrossRefGoogle Scholar
  25. 25.
    X. Nie, W. He, L. Zhou, Q. Li, and X. Wang, Experiment Investigation of Laser Shock Peening on TC6 Titanium Alloy to Improve High Cycle Fatigue Performance, Mater. Sci. Eng. A, 2014, 594, p 161–167.  https://doi.org/10.1016/j.msea.2013.11.073 CrossRefGoogle Scholar
  26. 26.
    Q. Hongchao, Experimental Investigation of Laser Peening on Ti17 Titanium Alloy for Rotor Blade Applications, Appl. Surf. Sci., 2015, 351, p 524–530.  https://doi.org/10.1016/j.apsusc.2015.05.098 CrossRefGoogle Scholar
  27. 27.
    X. Nie, W. He, S. Zang, X. Wang, and J. Zhao, Effect Study and Application to Improve High Cycle Fatigue Resistance of TC11 Titanium Alloy by Laser Shock Peening with Multiple Impacts, Surf. Coat. Technol., 2014, 253, p 68–75.  https://doi.org/10.1016/j.surfcoat.2014.05.015 CrossRefGoogle Scholar
  28. 28.
    L. Zhou, Y. Li, W. He, G. He, X. Nie, D. Chen, Z. Lai, and Z. An, Deforming TC6 Titanium Alloys at Ultrahigh Strain Rates During Multiple Laser Shock Peening, Mater. Sci. Eng. A, 2013, 578, p 181–186.  https://doi.org/10.1016/j.msea.2013.04.070 CrossRefGoogle Scholar
  29. 29.
    X.C. Zhang, Y.K. Zhang, J.Z. Lu, F.Z. Xuan, Z.D. Wang, and S.T. Tu, Improvement of Fatigue Life of Ti-6Al-4V Alloy by Laser Shock Peening, Mater. Sci. Eng. A, 2010, 527(15), p 3411–3415.  https://doi.org/10.1016/j.msea.2010.01.076 CrossRefGoogle Scholar
  30. 30.
    X. Yao, Q.Y. Sun, L. Xiao, and J. Sun, Effect of Ti2Cu Precipitates on Mechanical Behavior of Ti-2.5Cu Alloy Subjected to Different Heat Treatments, J. Alloys Compd., 2009, 484(1), p 196–202.  https://doi.org/10.1016/j.jallcom.2009.04.095 CrossRefGoogle Scholar
  31. 31.
    M.G. Moore, W.P. Evans, Mathematical Correction for Stress in Removed Layers in x-Ray Diffraction Residual Stress Analysis. SAE Technical Paper (1958)Google Scholar
  32. 32.
    M.E. Fitzpatrick, A.T. Fry, P. Holdway, F.A. Kandil, J. Shackleton, and L. Suominen, Determination of Residual Stresses by x-Ray Diffraction, National Physical Laboratory, UK, 2005Google Scholar
  33. 33.
    A. Umapathi and S. Swaroop, Wavelength Dependent Deformation in a Laser Peened Ti-2.5Cu Alloy, Mater. Sci. Eng. A, 2017, 684, p 344–352.  https://doi.org/10.1016/j.msea.2016.12.073 CrossRefGoogle Scholar
  34. 34.
    A.S. Gill, A. Telang, and V.K. Vasudevan, Characteristics of Surface Layers Formed on Inconel 718 by Laser Shock Peening With and Without a Protective Coating, J. Mater. Process. Technol., 2015, 225, p 463–472.  https://doi.org/10.1016/j.jmatprotec.2015.06.026 CrossRefGoogle Scholar
  35. 35.
    C. Rubio-González, G. Gomez-Rosas, J.L. Ocaña, C. Molpeceres, A. Banderas, J. Porro, and M. Morales, Effect of an Absorbent Overlay on the Residual Stress Field Induced by Laser Shock Processing on Aluminum Samples, Appl. Surf. Sci., 2006, 252(18), p 6201–6205.  https://doi.org/10.1016/j.apsusc.2005.08.062 CrossRefGoogle Scholar
  36. 36.
    H. Qiao, J. Zhao, and Y. Gao, Experimental Investigation of Laser Peening on TiAl Alloy Microstructure and Properties, Chin. J. Aeronaut., 2015, 28(2), p 609–616.  https://doi.org/10.1016/j.cja.2015.01.006 CrossRefGoogle Scholar
  37. 37.
    J. Fournier, P. Ballard, P. Merrien, J. Barralis, and L. Castex, Mechanical Effects Induced by Shock Waves Generated by High Energy Laser Pulses, J. Phys. EDP Sci., 1991, 1(9), p 1467–1480Google Scholar
  38. 38.
    U. Trdan, M. Skarba, and J. Grum, Laser Shock Peening Effect on the Dislocation Transitions and Grain Refinement of Al-Mg-Si Alloy, Mater. Charact., 2014, 97, p 57–68.  https://doi.org/10.1016/j.matchar.2014.08.020 CrossRefGoogle Scholar
  39. 39.
    U. Trdan, J.A. Porro, J.L. Ocaña, and J. Grum, Laser Shock Peening Without Absorbent Coating (LSPwC) Effect on 3D Surface Topography and Mechanical Properties of 6082-T651 Al Alloy, Surf. Coat. Technol., 2012, 208, p 109–116.  https://doi.org/10.1016/j.surfcoat.2012.08.048 CrossRefGoogle Scholar
  40. 40.
    C.S. Montross, T. Wei, L. Ye, G. Clark, and Y.-W. Mai, Laser Shock Processing and Its Effects on Microstructure and Properties of Metal Alloys: A Review, Int. J. Fatigue, 2002, 24(10), p 1021–1036.  https://doi.org/10.1016/S0142-1123(02)00022-1 CrossRefGoogle Scholar
  41. 41.
    Frank J. Zerilli and Ronald W. Armstrong, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61(5), p 1816–1825.  https://doi.org/10.1063/1.338024 CrossRefGoogle Scholar
  42. 42.
    S. Gencalp Irizalp, N. Saklakoglu, and B.S. Yilbas, Characterization of Microplastic Deformation Produced in 6061-T6 by Using Laser Shock Processing, Int. J. Adv. Manuf. Technol., 2014, 71(1), p 109–115.  https://doi.org/10.1007/s00170-013-5481-0 CrossRefGoogle Scholar
  43. 43.
    T. Ungar, H. Mughrabi, D. Rönnpagel, and M. Wilkens, X-ray Line-Broadening Study of the Dislocation Cell Structure in Deformed [001]-Orientated Copper Single Crystals, Acta Mater., 1984, 32(3), p 333–342.  https://doi.org/10.1016/0001-6160(84)90106-8 CrossRefGoogle Scholar
  44. 44.
    W. Lojkowski, M. Djahanbakhsh, G. Bürkle, S. Gierlotka, W. Zielinski, and H.J. Fecht, Nanostructure Formation on the Surface of Railway Tracks, Mater. Sci. Eng. A, 2001, 303(1), p 197–208.  https://doi.org/10.1016/S0921-5093(00)01947-X CrossRefGoogle Scholar
  45. 45.
    P.S. Follansbee and G.T. Gray, An Analysis of the Low Temperature, Low and High Strain-Rate Deformation of Ti-6Al-4V, Metall. Trans. A, 1989, 20(5), p 863–874.  https://doi.org/10.1007/BF02651653 CrossRefGoogle Scholar
  46. 46.
    G.G. Yapici, I. Karaman, and Z.-P. Luo, Mechanical Twinning and Texture Evolution in Severely Deformed Ti-6Al-4V at High Temperatures, Acta Mater., 2006, 54(14), p 3755–3771.  https://doi.org/10.1016/j.actamat.2006.04.007 CrossRefGoogle Scholar
  47. 47.
    I. Karaman, G.G. Yapici, Y.I. Chumlyakov, and I.V. Kireeva, Deformation Twinning in Difficult-to-Work Alloys During Severe Plastic Deformation, Mater. Sci. Eng. A, 2005, 410, p 243–247.  https://doi.org/10.1016/j.msea.2005.08.021 CrossRefGoogle Scholar
  48. 48.
    A.J. Wagoner Johnson, C.W. Bull, K.S. Kumar, and C.L. Briant, The Influence of Microstructure and Strain Rate on the Compressive Deformation Behavior of Ti-6Al-4V, Metall. Mater. Trans. A, 2003, 34(2), p 295.  https://doi.org/10.1007/s11661-003-0331-6 CrossRefGoogle Scholar
  49. 49.
    J. Peirs, W. Tirry, B. Amin-Ahmadi, F. Coghe, P. Verleysen, L. Rabet, D. Schryvers, and J. Degrieck, Microstructure of Adiabatic Shear Bands in Ti6Al4V, Mater. Charact., 2013, 75, p 79–92.  https://doi.org/10.1016/j.matchar.2012.10.009 CrossRefGoogle Scholar
  50. 50.
    L.E. Murr, A.C. Ramirez, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, D.H. Hernandez, and E. Martinez, Microstructure Evolution Associated with Adiabatic Shear Bands and Shear Band Failure in Ballistic Plug Formation in Ti-6Al-4V Targets, Mater. Sci. Eng. A, 2009, 516(1), p 205–216.  https://doi.org/10.1016/j.msea.2009.03.051 CrossRefGoogle Scholar
  51. 51.
    D. Framil Carpeño, T. Ohmura, L. Zhang, M. Dickinson, C. Seal, and M. Hyland, Softening and Compressive Twinning in Nanosecond Ultraviolet Pulsed Laser-Treated Ti6Al4V, Scr. Mater., 2016, 113, p 139–144.  https://doi.org/10.1016/j.scriptamat.2015.10.027 CrossRefGoogle Scholar
  52. 52.
    D.R. Chichili, K.T. Ramesh, and K.J. Hemker, The High-Strain-Rate Response of Alpha-Titanium: Experiments, Deformation Mechanisms and Modeling, Acta Mater., 1998, 46(3), p 1025–1043.  https://doi.org/10.1016/S1359-6454(97)00287-5 CrossRefGoogle Scholar
  53. 53.
    M.A. Meyers, G. Subhash, B.K. Kad, and L. Prasad, Evolution of Microstructure and Shear-Band Formation in α-hcp Titanium, Mech. Mater., 1994, 17(2), p 175–193.  https://doi.org/10.1016/0167-6636(94)90058-2 CrossRefGoogle Scholar
  54. 54.
    Y.F. Shen, N. Jia, R.D.K. Misra, and L. Zuo, Softening Behavior by Excessive Twinning and Adiabatic Heating at High Strain Rate in a Fe-20Mn-0.6C TWIP Steel, Acta Mater., 2016, 103, p 229–242.  https://doi.org/10.1016/j.actamat.2015.09.061 CrossRefGoogle Scholar
  55. 55.
    S.J. Lainé, K.M. Knowles, P.J. Doorbar, R.D. Cutts, and D. Rugg, Microstructural Characterisation of Metallic Shot Peened and Laser Shock Peened Ti-6Al-4V, Acta Mater., 2017, 123, p 350–361.  https://doi.org/10.1016/j.actamat.2016.10.044 CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Surface Modification Laboratory, School of Advanced SciencesVIT UniversityVelloreIndia

Personalised recommendations