Skip to main content
Log in

Influence of Sodium Silicate/Sodium Alginate Additives on Discharge Performance of Mg–Air Battery Based on AZ61 Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The application of Mg–air batteries is limited due to passivation and self-corrosion of anode alloys in electrolyte. In effort of solving this problem, the present work studied the influence of sodium silicate (SS)/sodium alginate (SA) on electrochemical behaviors of AZ61 alloy in NaCl solution by circle potentiodynamic polarization and galvanostatic discharge. The corrosion morphology and discharge product were examined by scanning electron microscopy (SEM) and x-ray diffraction (XRD). Results have shown that sodium silicate/sodium alginate inhibitors have an apparent effect on the self-corrosion of AZ61 alloy without affecting its discharge performance. The discharge capacity and the anodic utilization for Mg–air battery in a 0.6 M NaCl + 0.01 M SS +0.04 M SA solution are measured to be 1397 mAhg−1 and 48.2%, respectively. Electrochemical impedance spectroscopy (EIS) and SEM investigation have confirmed that the sodium silicate/sodium alginate inhibitor can obviously decrease the self-corrosion of AZ61 alloy. SEM and XRD diffraction examinations suggest that the inhibiting mechanism is due to the formation of a compact and “cracked mud” layer. AZ61 alloy can be used as the anode for Mg–air battery in a solution of 0.6 M NaCl + 0.01 M SS +0.04 M SA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Cheng and J. Chen, Chem, Metal-Air Batteries: From Oxygen Reduction Electrochemistry to Cathode Catalysts, Soc. Rev., 2012, 41, p 2172–2192

    Article  Google Scholar 

  2. H.Q. Xiong, H.L. Zhu, J. Luo, K. Yu, C.L. Shi, H.J. Fang, and Y. Zhang, Effects of Heat Treatment on the Discharge Behavior of Mg–6wt.%Al–1wt.%Sn Alloy as Anode For Magnesium-Air Batteries, JMEPEG, 2017, 26, p 2901–2911

    Article  Google Scholar 

  3. G. Huang, Y. Zhao, Y. Wang, H. Zhang, and F. Pan, Performance of Mg–Air Battery Based on AZ31 Alloy Sheet with Twins, Mater. Lett., 2013, 113, p 46–49

    Article  Google Scholar 

  4. J. Zhao, K. Yu, Y. Hu, S. Li, X. Tan, F. Chen, and Z. Yu, Discharge Behavior of Mg–4 wt.%Ga–2 wt.%Hg Alloy as Anode for Seawater Activated Battery, Electrochim. Acta, 2011, 56, p 8224–8231

    Article  Google Scholar 

  5. Motohiro Yuasa, Xinsheng Huang, Kazutaka Suzuki, Mamoru Mabuchi, and Yasumasa Chino, Effects of Microstructure on Discharge Behavior of AZ91 Alloy as Anode for Mg–Air Battery Materials Transactions, Mater. Trans., 2014, 55, p 1202–1207

    Article  Google Scholar 

  6. N. Wang, R. Wang, C. Peng, B. Peng, Y. Feng, and C. Hu, Discharge Behaviour of Mg-Al-Pb and Mg-Al-Pb–In Alloys as Anodes for Mg–Air Battery, Electrochim. Acta, 2014, 149, p 193–205

    Article  Google Scholar 

  7. T.X. Zheng, Y.B. Hu, and Y.X. Zhang, Composition optimization and electrochemical properties of Mg-Al-Sn-Mn alloy anode for Mg-air batteries, Mater. Des., 2018, 137, p 245–255

    Article  Google Scholar 

  8. H.Q. Xiong, K. Yu, and X. Yin, Effects of microstructure on the electrochemical discharge behavior of Mg-6 wt.%Al-1 wt.%Sn alloy as anode for Mg-air primary battery, J. Alloy. Compd., 2017, 708, p 652–661

    Article  Google Scholar 

  9. K. Yu, Q. Huang, J. Zhao, and Y. Dai, Electrochemical Properties of Magnesium Alloy Anodes Discharged in Seawater, T. Nonferr. Metal. Soc., 2012, 22, p 2184–2190

    Article  Google Scholar 

  10. Y. Lv, Y. Xu, and D. Cao, The Electrochemical Behaviors of Mg, Mg-Li-Al-Ce and Mg-Li-Al-Ce-Y in Sodium Chloride Solution, J. Power Sources, 2011, 196, p 8809–8814

    Article  Google Scholar 

  11. M. Yuasa, X. Huang, K. Suzuki, M. Mabuchi, and Y. Chino, Discharge Properties of Mg-Al-Mn-Ca and Mg-Al-Mn Alloys as Anode Materials for Primary Magnesium-Air Batteries, J. Power Sources, 2015, 297, p 449–456

    Article  Google Scholar 

  12. P. Wang, J. Li, Y. Guo, Z. Yang, F. Xia, and J. Wang, Effect of Sn on Microstructure and Electrochemical Properties of Mg Alloy Anode Materials, Rare Metal Mat. Eng, 2012, 41, p 2095–2099

    Article  Google Scholar 

  13. F.E. Heakal, N.S. Tantawy, and O.S. Shehata, Impact of Chloride and Fluoride Additions on Surface Reactivity and Passivity of AM60 Magnesium Alloy in Buffer Solution, Corros. Sci., 2012, 64, p 153–163

    Article  Google Scholar 

  14. J. Du, Z. Wang, and Y. Niu, Double Liquid Electrolyte for Primary Mg Batteries, J. Power Sources, 2014, 247, p 840–844

    Article  Google Scholar 

  15. J. Ma, Y. Lin, X. Chen, B. Zhao, and J. Zhang, Flow Behavior, Thixotropy and Dynamical Viscoelasticity of Sodium Alginate Aqueous Solutions, Food Hydrocolloids, 2014, 38, p 119–128

    Article  Google Scholar 

  16. U.S. Toti and T.M. Aminabhavi, Different Viscosity Grade Sodium Alginate and Modified Sodium Alginate Membranes in Pervaporation Separation of Water + Acetic Acid and Water + Isopropanol Mixtures, J. Membr. Sci., 2004, 228, p 199–208

    Article  Google Scholar 

  17. P. Zhang, Q. Li, L.Q. Li, X.X. Zhang, and Z.W. Wang, A Study Of Environment-Friendly Synergistic Inhibitors for AZ91D Magnesium Alloy, Anodes for Refuelable Magnesium-Air Batteries, Mater. Corrosion, 2013, 71, p 14–20

    Google Scholar 

  18. R.P. Hamlen, E.C. Jerabek, J.C. Ruzzo, and E.G. Siwek, Anodes for Refuelable Magnesium-Air Batteries, J. Electrochem. Soc., 1969, 116, p 1588–1592

    Article  Google Scholar 

  19. M. Yuasa, X. Huang, K. Suzuki, M. Mabuchi, and Y. Chino, Discharge Properties of Mg-Al-Mn-Ca and Mg-Al-Mn Alloys as Anode Materials for Primary Magnesium-Air Batteries, J. Power Sources, 2015, 297, p 449–456

    Article  Google Scholar 

  20. M.A. Amin, S.S. Abd El Rehim, and E.E.F. El Sherbini, AC and DC Studies of the Pitting Corrosion of Al in Perchlorate Solutions, Electrochim. Acta, 2006, 51, p 4754–4764

    Article  Google Scholar 

  21. M.A. Amina, S.S. Abd El-Rehima, E.E.F. El-Sherbinia, S.R. Mahmoudb, and M.N. Abbasc, Pitting Corrosion Studies on Al and Al–Zn alloys in SCN − solutions, Electrochim. Acta, 2009, 54, p 4288–4296

    Article  Google Scholar 

  22. M. Trueba and S.P. Trasatti, Study of Al alloy corrosion in neutral NaCl by the pitting scan technique, Mater. Chem. Phys. Mater. Chem. Phys., 2010, 121, p 523–533

    Article  Google Scholar 

  23. L.F. Hou, N. Dang, H.Y. Yang, B.S. Liu, Y.Y. Li, Y.H. Wei, and X.B. Chen, The Electrochemical Society A Combined Inhibiting Effect of Sodium Alginate and Sodium Phosphate on the Corrosion of Magnesium Alloy AZ31 in NaCl Solution, J. Electrochem. Soc., 2016, 163, p C486–C494

    Article  Google Scholar 

  24. V. Moutarlier, M.P. Gigandet, B. Normand, and J. Pagetti, EIS Characterisation of Anodic Films Formed on 2024 Aluminum Alloy in Sulphuric Acid Containing Molybdate or Permanganate Species, Corros. Sci., 2005, 47, p 937–945

    Article  Google Scholar 

  25. X. Chen, W.M. Tian, S.M. Li, M. Yu, and J.H. Liu, Effect of Temperature on Corrosion Behavior of 3003 Aluminum Alloy in Ethylene Glycol–Water Solution, Chin. J. Aeronaut., 2016, 29, p 114–121

    Google Scholar 

  26. D.A. Dornbusch, R. Hilton, M.J. Gordon, and G.J. Suppes, Effects of Sonication on EIS Results for Zinc Alkaline Batteries, ECS Electrochem. Lett., 2013, 2, p A89–A96

    Article  Google Scholar 

  27. M. Bethencourt, F.J. Botana, M.J. Cano, M. Marcos, J.M. Sánchez-Amaya, and L. González-Rovira, Using EIS to Analyse Samples of Al-Mg alloy AA5083 Treated by Thermal Activation in Cerium Salt Baths, Corros. Sci., 2008, 50, p 1376–1384

    Article  Google Scholar 

  28. F. Rosalbino, E. Angelini, D. Macciò, A. Saccone, and S. Delfino, Application of EIS to Assess the Effect of Rare Earths Small Addition on the Corrosion Behaviour of Zn-5% Al (Galfan) Alloy in Neutral Aerated Sodium Chloride Solution, Electrochim. Acta, 2009, 54, p 1204–1209

    Article  Google Scholar 

  29. W.R. Osório, L.C. Peixoto, and A. Garcia, The Effects of Ag Content and Dendrite Spacing on the Electrochemical Behavior of Pb-Ag Alloys for Pb-Acid Battery Components, J. Power Sources, 2013, 238, p 324–335

    Article  Google Scholar 

  30. O. Lopez-Garrity and G.S. Frankel, Corrosion Inhibition of AA2024-T3 By Sodium Silicate, Electrochim. Acta, 2014, 130, p 9–21

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese 02 Special Fund (Grant No. 2017ZX02408003), the Chinese 1000 Plan for High Level Foreign Experts (Grant No. WQ20154100278), and the Innovative Research Team Program of Henan University of Science and Technology (Grant No. 2015XTD006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangxin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Wang, G., Li, Y. et al. Influence of Sodium Silicate/Sodium Alginate Additives on Discharge Performance of Mg–Air Battery Based on AZ61 Alloy. J. of Materi Eng and Perform 27, 2247–2254 (2018). https://doi.org/10.1007/s11665-018-3327-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3327-5

Keywords

Navigation