Skip to main content
Log in

The Prediction of Microstructure Evolution of 6005A Aluminum Alloy in a P-ECAP Extrusion Study

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Finite element modeling (FEM) was applied for predicting the recrystallized structure in extruded 6005 aluminum alloy, and simulated results were experimentally validated. First, microstructure evolution of 6005 aluminum alloy during deformation was studied by means of isothermal compression test, where the processing parameters were chosen to reproduce the typical industrial conditions. Second, microstructure evolution was analyzed, and the obtained information was used to fit a dynamic recrystallization model implementing inside the DEFORM-3D FEM code environment. FEM of deformation of 6005 aluminum has been established and validated by microstructure comparison. Finally, the obtained dynamic recrystallization model was applied to tube extrusion by using a portholes-equal channel angular pressing die. The finite element analysis results showed that coarse DRX grains occur in the extruded tube at higher temperature and in the extruded tube at the faster speed of the stem. The test results showed material from the front end of the extruded tube has coarse grains (60 μm) and other extruded tube has finer grains (20 μm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M. Schikorr, L. Donati, L. Tomesani, and A.E. Tekkaya, Microstructure Analysis of Aluminum Extrusion: Prediction of Microstructure on AA6060 Alloy, J. Mater. Process. Technol., 2008, 201, p 156–162

    Article  Google Scholar 

  2. J.M.C. Mol, J. Van De Langkruis, J.H.W. De Wit, and S. Van Der Zwaag, An Integrated Study on the Effect of Pre- and Post-extrusion Heat Treatments and Surface Treatment on the Filiform Corrosion Properties of an Aluminium Extrusion Alloy, Corr. Sci., 2005, 47, p 2711–2730

    Article  Google Scholar 

  3. W.G. Jiang, G.C. Wang, S.Q. Lu, and J.W. Li, Prediction of Microstructure Evolution of Al–1% Mg Alloy During Hot Forming and Sequential Heat Treatment, J. Mater. Process. Technol., 2007, 182, p 274–280

    Article  Google Scholar 

  4. Y.C. Lin, L.T. Li, and Y.C. Xia, A new Method to Predict the Metadynamic Recrystallization Behavior in 2124 Aluminum Alloy, Comput. Mater. Sci., 2011, 50, p 2038–2043

    Article  Google Scholar 

  5. D. Samantaray, S. Mandal, A.K. Bhaduri, S. Venugopal, and P.V. Sivaprasad, Analysis and Mathematical Modelling of Elevated Temperature Flow Behaviour of Austenitic Stainless Steels, Mater. Sci. Eng., A, 2011, 528, p 1937–1943

    Article  Google Scholar 

  6. K. Wu, G.Q. Liu, B.F. Hu, F. Li, Y.W. Zhang, Y. Tao, and J.T. Liu, Hot Compressive Deformation Behavior of a New Hot Isostatically Pressed Ni-Cr-Co Based Powder Metallurgy Superalloy, Mater. Des., 2011, 32, p 1872–1879

    Article  Google Scholar 

  7. J. Cai, F.G. Li, T.Y.G. Liu, B. Chen, and M. He, Constitutive Equations for Elevated Temperature Flow Stress of Ti-6Al-4V Alloy Considering the Effect of Strain, Mater. Des., 2011, 32, p 1144–11518

    Article  Google Scholar 

  8. X.G. Fan, H. Yang, and P.F. Gao, Prediction of Constitutive Behavior and Microstructure Evolution in Hot Deformation of TA15 Titanium Alloy, Mater. Des., 2013, 51, p 34–42

    Article  Google Scholar 

  9. X.G. Fan, H. Yang, and P.F. Gao, Through-Process Macro–Micro Finite Element Modeling of Local Loading Forming of Large-Scale Complex Titanium Alloy Component for Microstructure Prediction, J. Mater. Process. Technol., 2014, 214, p 253–266

    Article  Google Scholar 

  10. Q. Dua, W.J. Poolea, M.A. Wellsb, and N.C. Parsonc, Microstructure Evolution During Homogenization of Al-Mn-Fe-Si Alloys: Modeling and Experimental Results, Acta Mater., 2013, 61, p 4961–4973

    Article  Google Scholar 

  11. J.E. Spowart, Microstructural Characterization and Modeling of Discontinuously-Reinforced Aluminum Composites, Mater. Sci. Eng., A, 2006, 425, p 225–237

    Article  Google Scholar 

  12. H. Ahmed, M.A. Wells, D.M. Maijer, B.J. Howes, and M.R. van der Winden, Modelling of Microstructure Evolution During Hot Rolling of AA5083 Using an Internal State Variable Approach Integrated into an FE Model, Mater. Sci. Eng., A, 2005, 390, p 278–290

    Article  Google Scholar 

  13. Q. Zhu, M.F. Abbod, J. Talamantes-Silva, C.M. Sellars, D.A. Linkens, and J.H. Beynon, Hybrid Modelling of Aluminium–Magnesium Alloys During Thermomechanical Processing in Terms of Physically-Based, Neuro-Fuzzy and Finite Element Models, Acta Mater., 2003, 51, p 5051–5062

    Article  Google Scholar 

  14. A. Simar, K.L. Nielsen, B. de Meester, V. Tvergaard, and T. Pardoen, Micro-Mechanical Modelling of Ductile Failure in 6005A Aluminium Using a Physics Based Strain Hardening Law Including Stage IV, Eng. Fract. Mech., 2010, 77, p 2491–2503

    Article  Google Scholar 

  15. J.D. Clayton, Modeling Effects of Crystalline Microstructure, Energy Storage Mechanisms, and Residual Volume Changes on Penetration Resistance of Precipitate-Hardened Aluminum Alloys, Compos. B, 2009, 40, p 443–450

    Article  Google Scholar 

  16. E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo, Grain Size Evolution During Discontinuous Dynamic Recrystallization, Scr. Mater., 2014, 72, p 1–4

    Article  Google Scholar 

  17. H. Li, C. Wu, and H. Yang, Crystal Plasticity Modeling of the Dynamic Recrystallization of Two-Phase Titanium Alloys During Isothermal Processing, Int. J. Plast, 2013, 51, p 271–291

    Article  Google Scholar 

  18. A.A. Brown and D.J. Bammann, Validation of a Model for Static and Dynamic Recrystallization in Metals, Int. J. Plast, 2012, 32–33, p 17–35

    Article  Google Scholar 

  19. Y.Y. Zong, D.B. Shan, M. Xu, and Y. Lv, Flow Softening and Microstructural Evolution of TC11 Titanium Alloy During Hot Deformation, J. Mater. Process. Technol., 2009, 209, p 1988–1994

    Article  Google Scholar 

  20. J. Luo, M.Q. Li, and D.W. Ma, The Deformation Behavior and Processing Maps in the Isothermal Compression of 7A09 Aluminum Alloy, Mater. Sci. Eng., A, 2012, 532, p 548–557

    Article  Google Scholar 

  21. Y. Liu, R. Hu, T. Zhang, H. Kou, J. Wang, G. Yang, and J. Li, Dendritic Growth and Microstructure Evolution with Different Cooling Rates in Ti48Al2Cr2Nb Alloy, J. Mater. Eng. Perform., 2016, 25, p 38–45

    Article  Google Scholar 

  22. L. Shi, H. Yang, L.G. Guo, and J. Zhang, Constitutive Modeling of Deformation in High Temperature of a Forging 6005A Aluminum Alloy, Mater. Des., 2014, 54, p 576–581

    Article  Google Scholar 

  23. L. Donati, J.S. Dzwonczyk, J. Zhou, and L. Tomesani, Microstructure Prediction of HOT-DEFORMED ALUMINIUM ALLOYS, Key Eng. Mater., 2008, 367, p 107–116

    Article  Google Scholar 

  24. F. Yin, L. Hua, H. Mao, X. Han, D. Qian, and R. Zhang, Microstructural Modeling and Simulation for GCr15 Steel During Elevated Temperature Deformation, Mater. Des., 2014, 55, p 560–573

    Article  Google Scholar 

  25. L. Shi, H. Yang, L. Guo, L. Dang, and J. Zhang, Large-Scale Manufacturing of Aluminum Alloy Plate Extruded from Subsize Billet by New Porthole-Equal Channel Angular Processing Technique, Trans. Nonferrous Met. Soc. China, 2014, 24, p 1521–1530

    Article  Google Scholar 

  26. L. Shi, H. Li, W.Z. Jin, Z.Y. Min, G.H. Liao, and X.F. Wang, Portholes-Equal Channel Angular Pressing: Novel Technique for Extrusion of 6061 Aluminum Alloy Tube by Subsize Billet, Int. J. Adv. Manuf. Tech., 2016, 85, p 355–363

    Article  Google Scholar 

  27. G. Fang, J. Zhou, and J. Duszczyk, Extrusion of 7075 Aluminium Alloy Through Double-Pocket Dies to Manufacture A Complex Profile, J. Mater. Process. Technol., 2009, 209, p 3050–3059

    Article  Google Scholar 

  28. R. Sikand, A.M. Kumar, A.K. Sachdev, A.A. Luo, V. Jain, and A.K. Gupta, AM30 Porthole Die Extrusions—A Comparison with Circular Seamless Extruded Tubes, J. Mater. Process. Technol., 2009, 209, p 6010–6020

    Article  Google Scholar 

  29. Y.W. Tham, M.W. Fu, H.H. Hng, M.S. Yong, and K.B. Lim, Bulk Nanostructured Processing of Aluminum Alloy, J. Mater. Process. Technol., 2007, 192–193, p 575–581

    Article  Google Scholar 

Download references

Acknowledgment

The author would like to acknowledge Chinese Postdoctoral Science Foundation (No. 2016M602238), Key Science and Technology Program of Henan Province (No.172102210403) and Key Scientific Research Foundation of Higher Education Institutions of Henan province (No. 17A430025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Jiu-Ba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, S., Jiu-Ba, W. & Chang, R. The Prediction of Microstructure Evolution of 6005A Aluminum Alloy in a P-ECAP Extrusion Study. J. of Materi Eng and Perform 27, 2566–2575 (2018). https://doi.org/10.1007/s11665-018-3326-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3326-6

Keywords

Navigation