Advertisement

Effect of Sputtering Current on the Comprehensive Properties of (Ti,Al)N Coating and High-Speed Steel Substrate

  • Yongyao Su
  • Liangliang Tian
  • Rong Hu
  • Hongdong Liu
  • Tong Feng
  • Jinbiao Wang
Article

Abstract

To improve the practical property of (Ti,Al)N coating on a high-speed steel (HSS) substrate, a series of sputtering currents were used to obtain several (Ti,Al)N coatings using a magnetron sputtering equipment. The phase structure, morphology, and components of (Ti,Al)N coatings were characterized by x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy, respectively. The performance of (Ti,Al)N coatings, adhesion, hardness, and wear resistance was tested using a scratch tester, micro/nanohardness tester, and tribometer, respectively. Based on the structure–property relationships of (Ti,Al)N coatings, the results show that both the Al content and deposition temperature of (Ti,Al)N coatings increased with sputtering current. A high Al content helped to improve the performance of (Ti,Al)N coatings. However, the HSS substrate was softened during the high sputtering current treatment. Therefore, the optimum sputtering current was determined as 2.5 A that effectively increased the hardness and wear resistance of (Ti,Al)N coating.

Keywords

high-speed steel property sputtering current structure (Ti,Al)N coating 

Notes

Acknowledgments

This work was financially supported by the Basic and Frontier Research Program of Chongqing Municipality (cstc2016jcyjA0451), Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1601104), The Foundation of Chongqing University of Art and Sciences (Y2015XC24, 2017RXC25), Natural Science Foundation of China (21603020), and NSAF (51275323).

References

  1. 1.
    J. Wang, Y.B. Liu, J. An, and L.M. Wang, Wear Mechanism Map of Uncoated HSS Tools During Drilling Die-Cast Magnesium Alloy, Wear, 2008, 265, p 685–691CrossRefGoogle Scholar
  2. 2.
    V. Braic, C.N. Zoita, M. Balaceanu, A. Kiss, A. Vladescu, A. Popescu, and M. Braic, TiAlN/TiAlZrN Multilayered Hard Coatings for Enhanced Performance of HSS Drilling Tools, Surf. Coat. Technol., 2010, 204, p 1925–19288CrossRefGoogle Scholar
  3. 3.
    R. Venkatesh, V.S. Rao, N. Arunkumar, S. Biswas, and R.S. Kumar, Wear Analysis on Silicon Carbide Coated HSS Pin on SS Disc Substrate, Proc. Mater. Sci., 2015, 10, p 644–650CrossRefGoogle Scholar
  4. 4.
    W.W. Wu, W.L. Chen, S.B. Yang, Y. Lin, S.H. Zhang, and T.Y. Cho, Design of AlCrSiN Multilayers and Nanocomposite Coating for HSS Cutting Tools, Appl. Surf. Sci., 2015, 351, p 803–810CrossRefGoogle Scholar
  5. 5.
    Z. Zheng and Z. Yu, Characteristics and Machining Applications of Ti(Y)N Coatings, Surf. Coat. Technol., 2010, 204, p 4107–4113CrossRefGoogle Scholar
  6. 6.
    L. Chen, M. Moser, Y. Du, and P.H. Mayrhofer, Compositional and Structural Evolution of Sputtered Ti-Al-N, Thin Solid Films, 2009, 517, p 6635–6641CrossRefGoogle Scholar
  7. 7.
    A. Rizzo, L. Mirenghi, M. Massaro, U. Galietti, L. Capodieci, R. Terzi, L. Tapfer, and D. Valerini, Improved Properties of TiAlN Coatings Through the Multilayer Structure, Surf. Coat. Technol., 2013, 235, p 475–483CrossRefGoogle Scholar
  8. 8.
    L. Chen, K.K. Chang, Y. Du, J.R. Li, and M.J. Wu, A Comparative Research on Magnetron Sputtering and Arc Evaporation Deposition of Ti-Al-N Coatings, Thin Solid Films, 2011, 519, p 3762–3767CrossRefGoogle Scholar
  9. 9.
    J.Y. Yan, D.J. Li, L. Dong, C.K. Gao, N. Wang, X.Y. Deng, H.Q. Gu, R.X. Wan, and X. Sun, The Modulation Structure Induced Changes in Mechanical Properties of TiAlN/Al2O3 Multilayers, Nucl. Instrum. Methods Phys. Res. Sect. B, 2013, 307, p 123–126CrossRefGoogle Scholar
  10. 10.
    H. Du, H. Zhao, and J.G. Xian, Effect of Interlayers on the Structure and Properties of TiAlN Based Coatings on WC-Co Cemented Carbide Substrate, Int. J. Refract. Metals Hard Mater., 2013, 37, p 60–66CrossRefGoogle Scholar
  11. 11.
    L. Tomaszewski, W. Gulbinski, A. Urbanowicz, T. Suszko, A. Lewandowski, and W. Gulbinski, TiAlN Based Wear Resistant Coatings Modified by Molybdenum Addition, Vacuum, 2015, 121, p 223–229CrossRefGoogle Scholar
  12. 12.
    L.H. Zhu, M.M. Hu, W.Y. Ni, and Y.X. Liu, Effect of Al Content on Adhesion Strength of TiAlN Coatings, Vacuum, 2012, 12, p 1795–1799CrossRefGoogle Scholar
  13. 13.
    M.A. Al-Bukhaiti, K.A. Al-hatab, W. Tillmann, F. Hoffmann, and T. Sprute, Tribological and Mechanical Properties of Ti/TiAlN/TiAlCN Nanoscale Multilayer PVD Coatings Deposited on AISI, H11 Hot Work Tool Steel, Appl. Surf. Sci., 2014, 318, p 180–190CrossRefGoogle Scholar
  14. 14.
    T. Mori, M. Noborisaka, T. Watanabe, and T. Suzuki, Oxidation Resistance and Hardness of TiAlSiN/CrAlYN Multilayer Films Deposited by the Arc Ion Plating Method, Surf. Coat. Technol., 2012, 213, p 216–220CrossRefGoogle Scholar
  15. 15.
    A. Inspektor and P.A. Salvador, Architecture of PVD Coatings for Metalcutting Applications: A Review, Surf. Coat. Technol., 2014, 257, p 138–153CrossRefGoogle Scholar
  16. 16.
    G.S. Fox-Rabinovich, B.D. Beake, J.L. Endrino, S.C. Veldhuis, R. Parkinson, L.S. Shuster, and M.S. Migranov, Effect of Mechanical Properties Measured at Room and Elevated Temperatures on the Wear Resistance of Cutting Tools with TiAlN and AlCrN Coatings, Surf. Coat. Technol., 2006, 200, p 5738–5742CrossRefGoogle Scholar
  17. 17.
    P. Panjan, B. NavinŠek, M. Čekada, and A. Zalarb, Oxidation Behaviour of TiAlN Coatings Sputtered at Low Temperature, Vacuum, 1999, 53, p 127–131CrossRefGoogle Scholar
  18. 18.
    A. Obrosov, R. Gulyaev, M. Ratzke, A.A. Volinsky, S. Bolz, M. Naveed, and S. Wei, XPS and AFM Investigations of Ti-Al-N Coatings Fabricated Using DC Magnetron Sputtering at Various Nitrogen Flow Rates and Deposition Temperatures, Metals, 2017, 7, p 1–10CrossRefGoogle Scholar
  19. 19.
    S. Sveen, J.M. Andersson, R.M. Saoubi, and M. Olsson, Scratch Adhesion Characteristics of PVD TiAlN Deposited on High speed Steel, Cemented Carbide and PCBN Substrates, Wear, 2013, 308, p 133–141CrossRefGoogle Scholar
  20. 20.
    Y.Y. Su, J.B. Wang, L.L. Tian, H.B. Zhao, M.J. Tu, and L.J. Zhao, Effect of Al Doped on Microstructure and Properties of TiN Coating, Funct. Mater., 2013, 44, p 2668–2671Google Scholar
  21. 21.
    K. Kutschej, P.H. Mayrhofer, M. Kathrein, P. Polcik, R. Tessadri, and C. Mitterer, Structure, Mechanical and Tribological Properties of Sputtered Ti1−xAlxN Coatings with 0.5 V ≤ x ≤ 0.75V, Surf. Coat. Technol., 2005, 200, p 2358–2365CrossRefGoogle Scholar
  22. 22.
    J.C. Oliveira, A. Manaia, and A. Cavaleiro, Hard Amorphous Ti-Al-N Coatings Deposited by Sputtering, Thin Solid Films, 2008, 516, p 5032–5038CrossRefGoogle Scholar
  23. 23.
    D.H. Jung, K. Moon, S.Y. Shin, and C.S. Lee, Influence of Ternary Elements (X = Si, B, Cr) on TiAlN Coating Deposited by Magnetron Sputtering Process with Single Alloying Targets, Thin Solid Films, 2013, 546, p 242–245CrossRefGoogle Scholar
  24. 24.
    N. Jiang, Y.G. Shen, H.J. Zhang, S.N. Bao, and X.Y. Hou, Superhard Nanocomposite Ti-Al-Si-N Films Deposited by Reactive Unbalanced Magnetron Sputtering, Mater. Sci. Eng. B, 2006, 135, p 1–9CrossRefGoogle Scholar
  25. 25.
    V. Uvarov and I. Popov, Metrological Characterization of X-ray Diffraction Methods for Determination of Crystallite Size in Nano-scale Materials, Mater. Charact., 2007, 58, p 883–891CrossRefGoogle Scholar
  26. 26.
    S.P. Pemmasani, K. Valleti, and C. Gundakaram, Effect of Microstructure and Phase Constitution on Mechanical Properties of Ti1−xAlxN Coatings, Appl. Surf. Sci., 2014, 313, p 936–946CrossRefGoogle Scholar
  27. 27.
    C. Wang, S. Ou, and S.Y. Chiou, Microstructures of TiN, TiAlN and TiAlVN Coatings on AISI, M2 Steel Deposited by Magnetron Reactive Sputtering, Trans. Nonferrous Metals Soc. China, 2014, 24, p 2559–2565CrossRefGoogle Scholar
  28. 28.
    J.Y. Yan, Y.D. Sun, D.J. Li, M.Y. Liu, L. Dong, M. Cao, and C.K. Gao, High-Temperature Stability of TiAlN/TiB2 Multilayers Grown on Al2O3 Substrates Using IBAD, Surf. Coat. Technol., 2013, 229, p 105–108CrossRefGoogle Scholar
  29. 29.
    W.Z. Li, H.W. Liu, M. Evaristo, T. Polcar, and A. Cavaleiro, Influence of Al Content on the Mechanical Properties and Thermal Stability in Protective and Oxidation Atmospheres of Zr-Cr-Al-N Coatings, Surf. Coat. Technol., 2013, 236, p 239–245CrossRefGoogle Scholar
  30. 30.
    Y.Y. Su, X. Gui, D. Xie, and S.Y. Li, The Effect of a TiN Interlayer on the Tribological Properties of Diamond-Like Carbon Films Deposited on 7A04 Aluminum Alloy, IEEE Trans. Plamsa Sci., 2011, 39, p 3144–3148CrossRefGoogle Scholar
  31. 31.
    P. Li, L. Chen, S.Q. Wang, B. Yang, Y. Du, J. Li, and M.J. Wu, Microstructure, Mechanical and Thermal Properties of TiAlN/CrAlN Multilayer Coatings, Int. J. Refract. Metals Hard Mater., 2013, 40, p 51–57CrossRefGoogle Scholar
  32. 32.
    B. Grossmann, N. Schalk, C. Czettl, M. Pohler, and C. Mitterer, Phase Composition and Thermal Stability of Arc Evaporated Ti1–xAlxN Hard Coatings with 0.4 ≤ x ≤ 0.67, Surf. Coat. Technol., 2017, 309, p 687–693CrossRefGoogle Scholar
  33. 33.
    C.L. Liang, G.A. Cheng, R.T. Zheng, and H.P. Liu, Fabrication and Performance of TiN/TiAlN Nanometer Modulated Coatings, Thin Solid Films, 2011, 520, p 813–817CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Research Institute for New Materials TechnologyChongqing University of Arts and SciencesChongqingPeople’s Republic of China

Personalised recommendations