Skip to main content
Log in

Microstructures and Mechanical Properties of Inconel 718 Alloy at Ultralow Temperatures

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructures and mechanical properties of powder metallurgy Inconel 718 alloy were investigated in the temperatures range between 25 and − 253 °C. Tensile strength increased with the decrease in temperature, while the ductility first increased and then decreased. There was no significant change in impact toughness. When the temperature was − 253 °C, a zigzag stress–strain curve was observed for the alloy, owing to the interaction of dislocation glide and twinning, which effectively maintained the relatively good ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T.S. Byun and K. Farrell, Tensile Properties of Inconel 718 After Low Temperature Neutron Irradiation, J. Nucl. Mater., 2003, 318, p 292–299

    Article  Google Scholar 

  2. J. Xu, Z. Huang, and L. Jiang, Effect of Heat Treatment on Low Cycle Fatigue of IN718 Superalloy at the Elevated Temperatures, Mater. Sci. Eng. A, 2017, 690, p 137–145

    Article  Google Scholar 

  3. R. Sharghi-Moshtaghin, H. Kahn, and Y. Ge, Low-Temperature Carburization of the Ni-Base Superalloy IN718: Improvements in Surface Hardness and Crevice Corrosion Resistance, Metal. Mater. Trans. A, 2010, 41, p 2022–2032

    Article  Google Scholar 

  4. K. Prasad, R. Sarkar, and P. Ghosal, High Temperature Low Cycle Fatigue Deformation Behaviour of Forged IN718 Superalloy Turbine Disc, Mater. Sci. Eng. A, 2013, 568, p 239–245

    Article  Google Scholar 

  5. T.H. Sanders, R.E. Frishmuth, and G.T. Embley, Temperature Dependent Deformation Mechanisms of Alloy 718 in Low Cycle Fatigue, Metal. Mater. Trans. A, 1981, 12, p 1003–1010

    Article  Google Scholar 

  6. J.M. Zhang, Z.Y. Gao, and J.Y. Zhuang, Strain-Rate Hardening Behavior of Superalloy IN718, J. Mater. Process. Technol., 1997, 70, p 252–257

    Article  Google Scholar 

  7. H. Andersson and C. Persson, In-Situ SEM Study of Fatigue Crack Growth Behaviour in IN718, Int. J. Fatigue, 2004, 26, p 211–219

    Article  Google Scholar 

  8. P.L. Blackwell, The Mechanical and Microstructural Characteristics of Laser-Deposited IN718, J. Mater. Process. Technol., 2005, 170, p 240–246

    Article  Google Scholar 

  9. H. Andersson, C. Persson, and T. Hansson, Crack Growth in IN718 at High Temperature, Int. J. Fatigue, 2001, 23, p 817–827

    Article  Google Scholar 

  10. S.V.S.N. Murty and B.N. Rao, On the Flow Localization Concepts in the Processing Maps of IN718, Mater. Sci. Eng. A, 1999, 267, p 159–161

    Article  Google Scholar 

  11. M. Becker and H.P. Hackenberg, A Constitutive Model for Rate Dependent and Rate Independent Inelasticity. Application to IN718, Int. J. Plast., 2011, 27, p 596–619

    Article  Google Scholar 

  12. T. Teramoto, Y. Kayamori, and T. Denda, Factors Influencing Fracture Mechanism of IN718 at Cryogenic Temperature, Trans. Jpn. Soc. Mech. Eng. A, 1995, 61, p 553–560

    Article  Google Scholar 

  13. E.A. Loria, Superalloys 718, 625, 706 and Various Derivatives, TMS, Warrendales, 1994, p 545–555

    Google Scholar 

  14. Y. Ono, T. Yuri, and H. Sumiyoshi, High-Cycle Fatigue Properties at Cryogenic Temperatures in Inconel 718 Nickel-Based Superalloy, Mater. Trans., 2004, 45, p 342–345

    Article  Google Scholar 

  15. Ö. Özgün, H.Ö. Gülsoy, R. Yılmaz, and F. Fındık, Microstructural and Mechanical Characterization of Injection Molded 718 Superalloy Powders, J. Alloys Compd., 2013, 576, p 140–153

    Article  Google Scholar 

  16. Z.M. Wang, K. Guan, M. Gao, X.Y. Li, X.F. Chen, and X.Y. Zeng, The Microstructure and Mechanical Properties of Deposited-IN718 by Selective Laser Melting, J. Alloys Compd., 2010, 513, p 518–523

    Article  Google Scholar 

  17. G.A. Rao, M. Srinivas, and D.S. Sarma, Influence of Modified Processing on Structure and Properties of Hot Isostatically Pressed Superalloy Inconel 718, Mater. Sci. Eng. A, 2006, 418, p 282–291

    Article  Google Scholar 

  18. G.A. Rao, K.S. Prasad, and M. Kumar, Characterisation of Hot Isostatically Pressed Nickel Base Superalloy Inconel 718, Mater. Sci. Technol., 2003, 19, p 313–321

    Article  Google Scholar 

  19. G.A. Rao, M. Kumar, and M. Srinivas, Effect of Standard Heat Treatment on the Microstructure and Mechanical Properties of Hot Isostatically Pressed Superalloy Inconel 718, Mater. Sci. Eng. A, 2003, 355, p 114–125

    Article  Google Scholar 

  20. G.A. Rao, M. Srinivas, and D.S. Sarma, Effect of Oxygen Content of Powder on Microstructure and Mechanical Properties of Hot Isostatically Pressed Superalloy Inconel 718, Mater. Sci. Eng. A, 2006, 435–436, p 84–99

    Article  Google Scholar 

  21. A. Nowotnik and J. Sieniawski, Effect of Thermomechanical Working on the Microstructure and Mechanical Properties of Hot Pressed Superalloy Inconel 718. Superalloy 718 and Derivatives, John Wiley & Sons, Inc., Hoboken, 2012, p 382–396

    Google Scholar 

  22. K.N. Amato, S.M. Gaytan, L.E. Murr, and E. Martinez, Microstructures and Mechanical Behavior of Inconel 718 Fabricated by Selective Laser Melting, Acta Mater., 2012, 60, p 2229–2239

    Article  Google Scholar 

  23. A.K. Koul, W. Wallace, and R. Thamburaj, Problems and Possibilities for Life Extension in Gas Turbine Components, AGARD Conference Proceedings, Vol 368, 1984, p 10.1–10.32

  24. Z. Zhang, Z.H. Tu, L.F. Li, L. Zhao, and D. Jin, Multi-necking in Tension of Titanium Alloy at Low Temperature, Chin. J. Low Temp. Phys., 1995, 17, p 238–241

    Google Scholar 

  25. Z. Zhang, Z.H. Tu, L.F. Li, L. Zhao, and D. Jin, Investigation of the Effect of Temperatures on Tensile Load Drops of Titanium Alloy, Acta Metall. Sin., 1997, 22, p 198–202

    Google Scholar 

  26. Y.J. Wu, T. Lan, and L. Zhou, Deformation Phenomenon of P/M Ti-5Al-2.5Sn(ELI) Alloy, Rare Met. Mater. Eng., 2005, 34, p 406–408

    Google Scholar 

  27. M.H. Huang, Research on Low Temperature Brittleness of Malleable Cast Iron, J. Kunming Univ. Sci. Technol., 1997, 6, p 135–137

    Google Scholar 

  28. A. Seeger, Dislocation and Mechanical Property of Crystals, Wiley, New York, 1957, p 243–250

    Google Scholar 

  29. Q.Y. Sun, X.P. Song, and H.C. Gu, Cyclic Deformation Behaviour of Commercially Pure Titanium at Cryogenic Temperature, Int. J. Fatigue, 2001, 23, p 187–191

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support of the National Natural Science Foundation of China (U1637210) and the Project of Innovation-driven Plan in Central South University (51271203). The authors would also like to thank Kathryn Sole, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, C.G., Lv, H.J., Yi, D.Q. et al. Microstructures and Mechanical Properties of Inconel 718 Alloy at Ultralow Temperatures. J. of Materi Eng and Perform 27, 2060–2069 (2018). https://doi.org/10.1007/s11665-018-3309-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3309-7

Keywords

Navigation