Effect of TiO2 Nanofiller Concentration on the Mechanical, Thermal and Biological Properties of HDPE/TiO2 Nanocomposites

  • Mohammad Sayem Mozumder
  • Abdel-Hamid I. Mourad
  • Anusha Mairpady
  • Hifsa Pervez
  • Md Emdadul Haque


The necessity for advanced and effective biomimetic tissue engineering materials has increased massively as bone diseases such as osteoporosis and bone cancer have become a major public health problem. Therefore, the objective of this study is to develop titanium dioxide (TiO2) nanoparticles-enriched high-density polyethylene (HDPE) nanocomposites that could serve as potential biomaterials. HDPE/TiO2 nanocomposites with varying TiO2 nanoparticles content were fabricated by using injection molding technique and were subjected to mechanical, thermal and biological characterization. SEM–EDS analysis confirmed even dispersion of TiO2 nanoparticles into the HDPE matrix. It was observed from the mechanical testing that the addition of TiO2 nanoparticles to HDPE noticeably improved the stiffness (from 345 to 378 MPa) while maintaining almost similar yield strength of pure HDPE. The thermal analyses revealed that TiO2 nanoparticles inclusion to HDPE matrix enhanced the thermal stability of nanocomposites, as the overall rate of crystallization increased by almost 4%. Furthermore, biocompatibility of nanocomposites was also studied by means of various cell culture experiments; human osteoblasts (hFOB) were seeded on the HDPE/TiO2 nanocomposites and were visualized through SEM after 72 h of incubation; surface morphology revealed normal cell growth and spreading with more attachment on PNC-10 that contains 10 wt.% of TiO2. Moreover, cell viability assays (i.e., MTT and cell attachment) revealed consistent increase in cell count and metabolic activity when triplicate cultures were incubated for 1, 3 and 7 days.


biocompatibility cell attachment crystallinity HDPE/TiO2 nanocomposites human osteoblasts nanofillers proliferation stiffness yield strength 



Authors like to acknowledge UPAR (UAEU-NRF) research grant to carry out this research. Authors would also like to thank Eng. Abdul Sattar, Dr. Saeed Tariq and Mr. Uma Maheswara Kannuri for their help in the experimental work.


  1. 1.
    M.M. Stevens, Biomaterials for Bone Tissue Engineering, Mater. Today, 2008, 11(5), p 18–25CrossRefGoogle Scholar
  2. 2.
    M.S. Mozumder, A. Mairpady, and A.-H.I. Mourad, Polymeric Nanobiocomposites for Biomedical Applications, J. Biomed. Mater. Res. Part B Appl. Biomater., 2017, 105B, p 1241–1259CrossRefGoogle Scholar
  3. 3.
    V. Uskoković, Nanostructured Composites for Hard Tissue Engineering Applications, Mater. Sci. Eng. C, 2015, 57, p 434–451CrossRefGoogle Scholar
  4. 4.
    S.N. White, W. Luo, M.L. Paine, H. Fong, M. Sarikaya, and M.L. Snead, Biological Organization of Hydroxyapatite Crystallites into a Fibrous Continuum Toughens and Controls Anisotropy in Human Enamel, J. Dent. Res., 2001, 80(1), p 321–326CrossRefGoogle Scholar
  5. 5.
    S.I. Stupp and P.V. Braun, Molecular Manipulation of Microstructures: Biomaterials, Ceramics, and Semiconductors, Science, 1997, 277(5330), p 1242–1248CrossRefGoogle Scholar
  6. 6.
    J. Xie, B.L. Luan, J. Wang, X.Y. Liu, C. Rorabeck, and R. Bourne, Novel Hydroxyapatite Coating on New Porous Titanium and Titanium-HDPE Composite for Hip Implant, Surf. Coat. Technol., 2008, 202(13), p 2960–2968CrossRefGoogle Scholar
  7. 7.
    G. Tripathi, A.K. Dubey, and B. Basu, Evaluation of Physico-Mechanical Properties and In Vitro Biocompatibility of Compression Molded HDPE Based Biocomposites with HA/Al2O3 Ceramic Fillers and Titanate Coupling Agents, J. Appl. Polym. Sci., 2012, 124(4), p 3051–3063CrossRefGoogle Scholar
  8. 8.
    M. Durbec, N. Mayer, D. Vertu-Ciolino, F. Disant, F. Mallein-Gerin, and E. Perrier-Groult, Reconstruction du cartilage nasal par ingénierie tissulaire à base de polyéthylène de haute densité et d’un hydrogel, Pathol. Biol., 2014, 62(3), p 137–145CrossRefGoogle Scholar
  9. 9.
    S. Deshpande and A. Munoli, Long-Term Results of High-Density Porous Polyethylene Implants in Facial Skeletal Augmentation: An Indian Perspective, Indian J. Plast. Surg., 2010, 43(1), p 34–39CrossRefGoogle Scholar
  10. 10.
    E. Tarani, Z. Terzopoulou, D.N. Bikiaris, T. Kyratsi, K. Chrissafis, and G. Vourlias, Thermal Conductivity and Degradation Behavior of HDPE/Graphene Nanocomposites, J. Therm. Anal. Calorim., 2017, 129(3), p 1715–1726CrossRefGoogle Scholar
  11. 11.
    A.K. Pandey, K. Singh, and K.K. Kar, Thermo-Mechanical Properties of Graphite-Reinforced High-Density Polyethylene Composites and Its Structure–Property Corelationship, J. Compos. Mater., 2017, 51(12), p 1769–1782CrossRefGoogle Scholar
  12. 12.
    J. Bian et al., HDPE Composites Strengthened-Toughened Synergistically by l-Aspartic Acid Functionalized Graphene/Carbon Nanotubes Hybrid Nanomaterials, J. Appl. Polym. Sci., 2017, 134(29), p 45055CrossRefGoogle Scholar
  13. 13.
    Y. Wu et al., Engineering Cartilage Substitute with a Specific Size and Shape Using Porous High-Density Polyethylene (HDPE) as Internal Support, J. Plast. Reconstr. Aesthet. Surg., 2010, 63(4), p e370–e375CrossRefGoogle Scholar
  14. 14.
    D.C. Tancred, B.A. McCormack, and A.J. Carr, A Synthetic Bone Implant Macroscopically Identical to Cancellous Bone, Biomaterials, 1998, 19(24), p 2303–2311CrossRefGoogle Scholar
  15. 15.
    P.V. Giannoudis, H. Dinopoulos, and E. Tsiridis, Bone Substitutes: An Update, Injury, 2005, 36(Suppl 3), p S20–S27CrossRefGoogle Scholar
  16. 16.
    B.W. Schreurs et al., Acetabular Reconstruction with Impacted Morsellised Cancellous Bone Graft And Cement, J. Bone Jt. Surg. [Br], 1998, 8080(3), p 391–395Google Scholar
  17. 17.
    T. Wellisz, Reconstruction of the Burned External Ear Using a Medpor Porous Polyethylene Pivoting Helix Framework, Plast. Reconstr. Surg., 1993, 91(5), p 811CrossRefGoogle Scholar
  18. 18.
    R. Cenzi, A. Farina, L. Zuccarino, and F. Carinci, Clinical Outcome of 285 Medpor Grafts Used for Craniofacial Reconstruction, J. Craniofac. Surg., 2005, 16(4), p 526–530CrossRefGoogle Scholar
  19. 19.
    A. Menderes, C. Baytekin, A. Topcu, M. Yilmaz, and A. Barutcu, Craniofacial Reconstruction with High-Density Porous Polyethylene Implants, J. Craniofac. Surg., 2004, 15(5), p 719–724CrossRefGoogle Scholar
  20. 20.
    G. Tripathi and B. Basu, Injection-Molded High-Density Polyethylene-Hydroxyapatite-Aluminum Oxide Hybrid Composites for Hard-Tissue Replacement: Mechanical, Biological, and Protein Adsorption Behavior, J. Appl. Polym. Sci., 2012, 124(3), p 2133–2143CrossRefGoogle Scholar
  21. 21.
    H. Fouad and R. Elleithy, High Density Polyethylene/Graphite Nano-Composites for Total Hip Joint Replacements: Processing and In Vitro Characterization, J. Mech. Behav. Biomed. Mater., 2011, 4(7), p 1376–1383CrossRefGoogle Scholar
  22. 22.
    A. Pegoretti, A. Dorigato, and A. Penati, Tensile Mechanical Response of Polyethylene–Clay Nanocomposites, Express Polym. Lett., 2007, 1(3), p 123–131CrossRefGoogle Scholar
  23. 23.
    A.-H. Mourad, M. Mozumder, A. Mairpady, H. Pervez, and U. Kannuri, On the Injection Molding Processing Parameters of HDPE-TiO2 Nanocomposites, Materials (Basel), 2017, 10(1), p 85CrossRefGoogle Scholar
  24. 24.
    W. Tang, M.H. Santare, and S.G. Advani, Melt Processing and Mechanical Property Characterization of Multi-Walled Carbon Nanotube/High Density Polyethylene (MWNT/HDPE) Composite Films, Carbon N. Y., 2003, 41(14), p 2779–2785CrossRefGoogle Scholar
  25. 25.
    F.H. Mohamed, A.-H.I. Mourad, and D.C. Barton, UV Irradiation and Aging Effects on Nanoscale Mechanical Properties of Ultra High Molecular Weight Polyethylene for Biomedical Implants, Plast. Rubber Compos., 2008, 37(8), p 346–352CrossRefGoogle Scholar
  26. 26.
    H. Fouad, A.-H.I. Mourad, and D.C. Barton, Effect of Pre-Heat Treatment on the Static and Dynamic Thermo-Mechanical Properties of Ultra-High Molecular Weight Polyethylene, Polym. Test., 2005, 24(5), p 549–556CrossRefGoogle Scholar
  27. 27.
    A.-H.I. Mourad, H. Fouad, and R. Elleithy, Impact of Some Environmental Conditions on the Tensile, Creep-Recovery, Relaxation, Melting and Crystallinity Behaviour of UHMWPE-GUR 410-Medical Grade, Mater. Des., 2009, 30(10), p 4112–4119CrossRefGoogle Scholar
  28. 28.
    J.P. Simon and G. Fabry, An Overview of Implant Materials, Acta Orthop. Belg., 1991, 57(1), p 1–5Google Scholar
  29. 29.
    X. Wang, Advances in Biomaterials Science and Biomedical Applications, InTech, Rijeka, 2013Google Scholar
  30. 30.
    L. Mancic, R.F.M. Osman, A.M.L.M. Costa, J.R.M. d’Almeida, B.A. Marinkovic, and F.C. Rizzo, Thermal and Mechanical Properties of Polyamide 11 Based Composites Reinforced with Surface Modified Titanate Nanotubes, Mater. Des., 2015, 83, p 459–467CrossRefGoogle Scholar
  31. 31.
    H. Fischer, Polymer Nanocomposites: From Fundamental Research to Specific Applications, Mater. Sci. Eng. C, 2003, 23(6-8), p 763–772CrossRefGoogle Scholar
  32. 32.
    C. Yao, D. Storey, and T.J. Webster, Nanostructured Metal Coatings on Polymers Increase Osteoblast Attachment, Int. J. Nanomed., 2007, 2(3), p 487–492Google Scholar
  33. 33.
    R.A. Pareta, A.B. Reising, T. Miller, D. Storey, and T.J. Webster, An Understanding of Enhanced Osteoblast Adhesion on Various Nanostructured Polymeric and Metallic Materials Prepared by Ionic Plasma Deposition, J. Biomed. Mater. Res. Part A, 2010, 92(3), p 1190–1201Google Scholar
  34. 34.
    P.M. Ajayan, L.S. Schadler, and P.V. Braun, Ed., Nanocomposite Science and Technology, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003Google Scholar
  35. 35.
    A. Downing-Perrault, Polymer Nanocomposites are the Future, Menomonie, Wisconsin, USA, 2005Google Scholar
  36. 36.
    S.H. Abdul Kaleel, B.K. Bahuleyan, J. Masihullah, and M. Al-Harthi, Thermal and Mechanical Properties of Polyethylene/Doped-TiO2 Nanocomposites Synthesized Using In Situ Polymerization, J. Nanomater., 2011, 2011, p e964353CrossRefGoogle Scholar
  37. 37.
    F. Yang, Y. Ou, and Z. Yu, Polyamide 6/Silica Nanocomposites Prepared by In Situ Polymerization, J. Appl. Polym. Sci., 1998, 69(2), p 355–361CrossRefGoogle Scholar
  38. 38.
    M. Alexandre and P. Dubois, Polymer-Layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials, Mater. Sci. Eng. R Rep., 2000, 28(1–2), p 1–63CrossRefGoogle Scholar
  39. 39.
    M. Hashimoto, H. Takadama, M. Mizuno, and T. Kokubo, Mechanical Properties and Apatite Forming Ability of TiO2 Nanoparticles/High Density Polyethylene Composite: Effect of Filler Content, J. Mater. Sci. Mater. Med., 2007, 18(4), p 661–668CrossRefGoogle Scholar
  40. 40.
    W.D. Callister and D.G. Rethwisch, Materials Science and Engineering: An Introduction, John Wiley and Sons, London, 2010, p 992Google Scholar
  41. 41.
    M. Bilewicz, J. Viana, and L. Dobrzański, Polymer Composite Strengthening by Developed Injection Moulding Technique, Arch. Mater. Sci. Eng., 2008, 30(2), p 69–72Google Scholar
  42. 42.
    S. Thomas, Polymer Composites Volume 1, Wiley-VCH, London, 2012CrossRefGoogle Scholar
  43. 43.
    H. Pervez, M. Mozumder, and A.-H. Mourad, Optimization of Injection Molding Parameters for HDPE/TiO2 Nanocomposites Fabrication with Multiple Performance Characteristics Using the Taguchi Method and Grey Relational Analysis, Materials (Basel), 2016, 9(8), p 710CrossRefGoogle Scholar
  44. 44.
    E. Fabian, R. Landsiedel, L. Ma-Hock, K. Wiench, W. Wohlleben, and B. van Ravenzwaay, Tissue Distribution and Toxicity of Intravenously Administered Titanium Dioxide Nanoparticles in Rats, Arch. Toxicol., 2007, 82(3), p 151–157CrossRefGoogle Scholar
  45. 45.
    Y. Duan et al., Toxicological Characteristics of Nanoparticulate Anatase Titanium Dioxide in Mice, Biomaterials, 2010, 31(5), p 894–899CrossRefGoogle Scholar
  46. 46.
    V. Hermán et al., Biocompatibility Studies of HDPE–HA Composites with Different HA Content, Polym. Bull., 2015, 72(12), p 3083–3095CrossRefGoogle Scholar
  47. 47.
    C.-S. Kim, K.-H. Jung, H. Kim, C.-B. Kim, and I.-K. Kang, Collagen-Grafted Porous HDPE/PEAA Scaffolds for Bone Reconstruction, Biomater. Res., 2016, 20, p 23–31CrossRefGoogle Scholar
  48. 48.
    S. Kay, A. Thapa, K.M. Haberstroh, and T.J. Webster, Nanostructured Polymer/Nanophase Ceramic Composites Enhance Osteoblast and Chondrocyte Adhesion, Tissue Eng., 2002, 8(5), p 753–761CrossRefGoogle Scholar
  49. 49.
    D.A. Puleo et al., Implant Surfaces, Dent. Clin. North Am., 2006, 50(3), p 323–338CrossRefGoogle Scholar
  50. 50.
    S.S. Homaeigohar, M.A. Shokrgozar, A. Khavandi, and A.Y. Sadi, In Vitro Biological Evaluation of β-TCP/HDPE-A Novel Orthopedic Composite: A Survey Using Human Osteoblast and Fibroblast Bone Cells, J. Biomed. Mater. Res. Part A, 2008, 84A(2), p 491–499CrossRefGoogle Scholar
  51. 51.
    M.A. Shokrgozar et al., Biocompatibility Evaluation of HDPE-UHMWPE Reinforced β-TCP Nanocomposites Using Highly Purified Human Osteoblast Cells, J. Biomed. Mater. Res. Part A, 2010, 95A(4), p 1074–1083CrossRefGoogle Scholar
  52. 52.
    K. Yamamoto et al., Generation of Directly Converted Human Osteoblasts that are Free of Exogenous Gene and Xenogenic Protein, J. Cell. Biochem., 2016, 117(11), p 2538–2545CrossRefGoogle Scholar
  53. 53.
    K. Yamamoto et al., Direct Conversion of Human Fibroblasts into Functional Osteoblasts by Defined Factors, Proc. Natl. Acad. Sci., 2015, 112(19), p 6152–6157CrossRefGoogle Scholar
  54. 54.
    S.M. Ashraf, A Laboratory Manual of Polymers, I. K. International Pvt Ltd., Delhi, 2008Google Scholar
  55. 55.
    Q. Guo, Polymer Morphology: Principles, Characterization, and Processing, Wiley, London, 2016CrossRefGoogle Scholar
  56. 56.
    S.L. Aggarwal and G.P. Tilley, Determination of Crystallinity in Polyethylene by X-ray Diffractometer, J. Polym. Sci., 1955, 18(87), p 17–26CrossRefGoogle Scholar
  57. 57.
    E. Lizundia, J.L. Vilas, and L.M. León, Crystallization, Structural Relaxation and Thermal Degradation in Poly(l-Lactide)/Cellulose Nanocrystal Renewable Nanocomposites, Carbohydr. Polym., 2015, 123, p 256–265CrossRefGoogle Scholar
  58. 58.
    P. Fei, B. Fei, Y. Yu, H. Xiong, and J. Tan, Thermal Properties and Crystallization Behavior of Bamboo Fiber/High-Density Polyethylene Composites: Nano-TiO2 Effects, J. Appl. Polym. Sci., 2014, 131(3), p n/aCrossRefGoogle Scholar
  59. 59.
    O.E. Gouda, S.F. Mahmoud, A.A. El-Gendy, and A.S. Haiba, Improving the Dielectric Properties of High Density Polyethylene by Incorporating Clay-Nano Filler, Indones. J. Electr. Eng. Comput. Sci., 2014, 12(12), p 7987–7995Google Scholar
  60. 60.
    M.M. Kamrannejad, A. Hasanzadeh, N. Nosoudi, L. Mai, and A.A. Babaluo, Photocatalytic Degradation of Polypropylene/TiO2 Nano-Composites, Mater. Res., 2014, 17(4), p 1039–1046CrossRefGoogle Scholar
  61. 61.
    H. Perinpanayagam, W. Shi, M.S. Mozumder, H. Zhang, and J. Zhu, MTA-Enriched Nanocomposite TiO2-Polymeric Powder Coatings Support Human Mesenchymal Cell Attachment and Growth, Biomed. Mater., 2012, 7(5), p 055006CrossRefGoogle Scholar
  62. 62.
    M.S. Mozumder, J. Zhu, and H. Perinpanayagam, Titania-Polymeric Powder Coatings with Nano-Topography Support Enhanced Human Mesenchymal Cell Responses, J. Biomed. Mater. Res. A, 2012, 100(10), p 2695–2709CrossRefGoogle Scholar
  63. 63.
    M.S. Mozumder, A.-H.I. Mourad, H. Perinpanayagam, and J. Zhu, NanoTiO2-Enriched Biocompatible Polymeric Powder Coatings: Adhesion, Thermal and Biological Characterizations, Adv. Mater. Res., 2014, 995, p 113–124CrossRefGoogle Scholar
  64. 64.
    N. Hou, H. Perinpanayagam, M. Mozumder, and J. Zhu, Novel Development of Biocompatible Coatings for Bone Implants, Coatings, 2015, 5(4), p 737–757CrossRefGoogle Scholar
  65. 65.
    M.S. Mozumder, A.-H.I. Mourad, H. Perinpanayagam, and J. Zhu, Nano-SiO2 Enriched Biocompatible Powder Coatings, Mater. Today Proc., 2015, 2(1), p 147–152CrossRefGoogle Scholar
  66. 66.
    J.F. Wang, X.Y. Liu, and B. Luan, Fabrication of Ti/Polymer Biocomposites for Load-Bearing Implant Applications, J. Mater. Process. Technol., 2008, 197(1–3), p 428–433CrossRefGoogle Scholar
  67. 67.
    Y. Jafarzadeh and R. Yegani, Analysis of Fouling Mechanisms in TiO2 Embedded High Density Polyethylene Membranes for Collagen Separation, Chem. Eng. Res. Des., 2015, 93, p 684–695CrossRefGoogle Scholar
  68. 68.
    D. Olmos, C. Domínguez, P.D. Castrillo, and J. Gonzalez-Benito, Crystallization and Final Morphology of HDPE: Effect of the High Energy Ball Milling and the Presence of TiO2 Nanoparticles, Polymer (Guildf), 2009, 50(7), p 1732–1742CrossRefGoogle Scholar
  69. 69.
    J. Li, S. Il Seok, B. Chu, F. Dogan, Q. Zhang, and Q. Wang, Nanocomposites of Ferroelectric Polymers with TiO2 Nanoparticles Exhibiting Significantly Enhanced Electrical Energy Density, Adv. Mater., 2009, 21(2), p 217–221CrossRefGoogle Scholar
  70. 70.
    V.G. Nguyen, H. Thai, D.H. Mai, H.T. Tran, D.L. Tran, and M.T. Vu, Effect of Titanium Dioxide on the Properties of Polyethylene/TiO2 Nanocomposites, Compos. Part B Eng., 2013, 45(1), p 1192–1198CrossRefGoogle Scholar
  71. 71.
    F. Carrasco, P. Pagès, J. Gámez-Pérez, O.O. Santana, and M.L. Maspoch, Processing of Poly(Lactic Acid): Characterization of Chemical Structure, Thermal Stability and Mechanical Properties, Polym. Degrad. Stab., 2010, 95(2), p 116–125CrossRefGoogle Scholar
  72. 72.
    M.L. Maspoch, J. Gamez-Perez, E. Gimenez, O.O. Santana, and A. Gordillo, Influence of Processing on Ethylene-Propylene Block Copolymers: Structure and Mechanical Behavior, J. Appl. Polym. Sci., 2004, 93(6), p 2866–2878CrossRefGoogle Scholar
  73. 73.
    Á. GombÁs, P. Szabó-Révész, M. Kata, G. Regdon, and I. Erős, Quantitative Determination of Crystallinity of α-Lactose Monohydrate by DSC, J. Therm. Anal. Calorim., 2002, 68(2), p 503–510CrossRefGoogle Scholar
  74. 74.
    B. Wetzel, F. Haupert, K. Friedrich, M.Q. Zhang, and M.Z. Rong, Impact and Wear Resistance of Polymer Nanocomposites at Low Filler Content, Polym. Eng. Sci., 2002, 42(9), p 1919–1927CrossRefGoogle Scholar
  75. 75.
    A. Gungor, Mechanical Properties of Iron Powder Filled High Density Polyethylene Composites, Mater. Des., 2007, 28(3), p 1027–1030CrossRefGoogle Scholar
  76. 76.
    Z. Wang, X. Wang, G. Xie, G. Li, and Z. Zhang, Preparation and Characterization of Polyethylene/TiO2 Nanocomposites, Compos. Interfaces, 2006, 13(7), p 623–632CrossRefGoogle Scholar
  77. 77.
    G.C. Eastmond, Polymer Blends: Processing, Morphology, and Properties, vol 2, M. Kryszewski, A. Galeski, E. Martuscelli, Ed., Plenum Press, New York, 1984, pp ix. (Br. Polym. J., vol. 19, no. 3-4, pp. 418–419, May 1987)Google Scholar
  78. 78.
    W.M.G. Jr. and N.R. Moody, Ductile Fracture, J. Phys. Chem. Solids, 1987, 48(11), p 1035–1074CrossRefGoogle Scholar
  79. 79.
    J. Cho and D. Paul, Nylon 6 Nanocomposites by Melt Compounding, Polymer (Guildf), 2001, 42(3), p 1083–1094CrossRefGoogle Scholar
  80. 80.
    D.N. Bikiaris, G.Z. Papageorgiou, E. Pavlidou, N. Vouroutzis, P. Palatzoglou, and G.P. Karayannidis, Preparation by Melt Mixing and Characterization of Isotactic Polypropylene/SiO2 Nanocomposites Containing Untreated and Surface-Treated Nanoparticles, J. Appl. Polym. Sci., 2006, 100(4), p 2684–2696CrossRefGoogle Scholar
  81. 81.
    R.Y.Y. Jafarzadeh, R. Yegani, and S.B. Tantekin-Ersolmaz, Effect of TiO2 Nanoparticles on Structure and Properties of High Density Polyethylene Membranes Prepared by Thermally Induced Phase Separation Method, Polym. Adv. Technol., 2015, 26(4), p 392–398CrossRefGoogle Scholar
  82. 82.
    V.M. Tuan et al., Using Rutile TiO2 Nanoparticles Reinforcing High Density Polyethylene Resin, Int. J. Polym. Sci., 2014, 2014, p 1–7CrossRefGoogle Scholar
  83. 83.
    A. Dehbi, A.-H.I. Mourad, and A. Bouaza, Degradation Assessment of LDPE Multilayer Films Used as a Greenhouse Cover: Natural and Artificial Aging Impacts, J. Appl. Polym. Sci., 2012, 124(4), p 2702–2716CrossRefGoogle Scholar
  84. 84.
    A. Dehbi and A.-H.I. Mourad, Durability of Mono-Layer Versus Tri-Layers LDPE Films Used as Greenhouse Cover: Comparative Study, Arab. J. Chem., 2016, 9(1), p S282–S289Google Scholar
  85. 85.
    A. Dehbi, A.-H.I. Mourad, K. Djakhdane, and A. Hilal-Alnaqbi, Degradation of Thermomechanical Performance and Lifetime Estimation of Multilayer Greenhouse Polyethylene Films Under Simulated Climatic Conditions, Polym. Eng. Sci., 2015, 55(2), p 287–298CrossRefGoogle Scholar
  86. 86.
    J.L. Iskoe, F.F. Lange, and E.S. Diaz, Effect of Selected Impurities on the High Temperature Mechanical Properties of Hot-Pressed Silicon Nitride, J. Mater. Sci., 1976, 11(5), p 908–912CrossRefGoogle Scholar
  87. 87.
    Y.M. Wang, S. Cheng, Q.M. Wei, E. Ma, T.G. Nieh, and A. Hamza, Effects of Annealing and Impurities on Tensile Properties of Electrodeposited Nanocrystalline Ni, Scr. Mater., 2004, 51(11), p 1023–1028CrossRefGoogle Scholar
  88. 88.
    L. Meng et al., Inhibitory Effects of Multiwall Carbon Nanotubes with High Iron Impurity on Viability and Neuronal Differentiation in Cultured PC12 Cells, Toxicology, 2013, 313(1), p 49–58CrossRefGoogle Scholar
  89. 89.
    J. Zhu, F.M. Uhl, A.B. Morgan, and C.A. Wilkie, Studies on the Mechanism by Which the Formation of Nanocomposites Enhances Thermal Stability, Chem. Mater., 2001, 13(12), p 4649–4654CrossRefGoogle Scholar
  90. 90.
    S.D. Bruck, Thermal Degradation of an Aromatic Polypyromellitimide in Air and Vacuum II—The Effect of Impurities and the Nature of Degradation Products, Polymer (Guildf), 1965, 6(1), p 49–61CrossRefGoogle Scholar
  91. 91.
    M.J. Khan, M.A. Al-Harthi, A.K.S. Haniffa, B.K. Bahuleyan, S.K. De, Method of Promoting Olefin Polymerization, US 8188199 B1, 2012.Google Scholar
  92. 92.
    S.M. Khaled, R. Sui, P.A. Charpentier, and A.S. Rizkalla, Synthesis of TiO(2)-PMMA Nanocomposite: Using Methacrylic Acid as a Coupling Agent, Langmuir, 2007, 23(7), p 3988–3995CrossRefGoogle Scholar
  93. 93.
    I.D. Sideridou, M.M. Karabela, and E.C. Vouvoudi, Physical Properties of Current Dental Nanohybrid and Nanofill Light-Cured Resin Composites, Dent. Mater., 2011, 27(6), p 598–607CrossRefGoogle Scholar
  94. 94.
    S. Sekar, A. Chandrasekaran, U. Rao, and T.P. Sastry, Comparison of Some of the Physicochemical Characteristics of Type 2 Diabetic and Normal Human Bones: A Sample Study, J. Diabetes Complicat., 2011, 25(3), p 187–192CrossRefGoogle Scholar
  95. 95.
    G. Tripathi and B. Basu, In Vitro Osteogenic Cell Proliferation, Mineralization, and In Vivo Osseointegration of Injection Molded High-Density Polyethylene-Based Hybrid Composites in Rabbit Animal Model, J. Biomater. Appl., 2014, 29(1), p 142–157CrossRefGoogle Scholar
  96. 96.
    N.Y. Hou, J. Zhu, H. Zhang, and H. Perinpanayagam, Epoxy Resin-Based Ultrafine Dry Powder Coatings for Implants, J. Appl. Polym. Sci., 2016, 133(37), p 43960CrossRefGoogle Scholar
  97. 97.
    M. Ahmed, G. Punshon, A. Darbyshire, and A.M. Seifalian, Effects of Sterilization Treatments on Bulk and Surface Properties of Nanocomposite Biomaterials, J. Biomed. Mater. Res. B Appl. Biomater., 2013, 101(7), p 1182–1190CrossRefGoogle Scholar
  98. 98.
    D.-C. Sun and C.F. Stark, Non-Oxidizing Polymeric Medical Implant, US 6174934 B1, Jan 2001.Google Scholar
  99. 99.
    M.M. Mikhael, P.M. Huddleston, M.E. Zobitz, Q. Chen, K.D. Zhao, and K.-N. An, Mechanical Strength of Bone Allografts Subjected to Chemical Sterilization and Other Terminal Processing Methods, J. Biomech., 2008, 41(13), p 2816–2820CrossRefGoogle Scholar
  100. 100.
    T.E. Mroz et al., Biomechanical Analysis of Allograft Bone Treated with a Novel Tissue Sterilization Process, Spine J., 2006, 6(1), p 34–39CrossRefGoogle Scholar
  101. 101.
    T.-C. Nguyen, Y. Bai, X.-L. Zhao, and R. Al-Mahaidi, Effects of Ultraviolet Radiation and Associated Elevated Temperature on Mechanical Performance of Steel/CFRP Double Strap Joints, Compos. Struct., 2012, 94(12), p 3563–3573CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Mohammad Sayem Mozumder
    • 1
  • Abdel-Hamid I. Mourad
    • 2
  • Anusha Mairpady
    • 1
  • Hifsa Pervez
    • 1
  • Md Emdadul Haque
    • 3
  1. 1.Department of Chemical and Petroleum EngineeringUAE University, PO Box 15551Al AinUAE
  2. 2.Department of Mechanical EngineeringUAE UniversityAl AinUAE
  3. 3.Biochemistry, College of Medicine and Health SciencesUAE UniversityAl AinUAE

Personalised recommendations