Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1738–1745 | Cite as

Annealing Effects on Microstructure and Mechanical Properties of Ultrafine-Grained Al Composites Reinforced with Nano-Al2O3 by Rotary Swaging

  • Cunguang Chen
  • Wenwen Wang
  • Zhimeng Guo
  • Chunbao Sun
  • Alex A. Volinsky
  • Vladislav Paley


Microstructure evolution and variations in mechanical properties of Al-Al2O3 nanocomposite produced by powder metallurgy were investigated and compared with commercially pure aluminum (Al-1050) after furnace annealing. Fine gas-atomized Al powder compacts were first sintered in flowing nitrogen, subsequently consolidated into wires by rotary swaging and eventually annealed at 300 and 500 °C for 24 h each. Scanning and transmission electron microscopy with energy-dispersive spectroscopy was utilized to document the microstructure evolution. Rotary swaging was proven to lead to a marked decrease in grain size. After heavy swaging to true deformation degree of φ = 6 and annealing at 500 °C, obvious recrystallization was observed at Al-1050’s existing grain boundaries and the crystals began to grow perpendicular to the flow direction. In the Al-Al2O3 nanocomposite, fabricated from d50 = 6 μm Al powder, recrystallization partially occurred, while grains were still extremely fine. Due to the dual role of fine-grained Al2O3 dispersion strengthening, the nanocomposite showed improved mechanical performance in terms of tensile strength, approximately twice higher than Al-1050 after annealing at 500 °C.


Al composite mechanical properties microstructure evolution powder metallurgy rotary swaging 



This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-16-017A1) and the National High Technology Research and Development Program of China (Grant No. 2013AA031104).


  1. 1.
    C.D. Boland, R.L. Hexemer, Jr., I.W. Donaldson, and D.P. Bishop, Industrial Processing of a Novel Al-Cu-Mg Powder Metallurgy Alloy, Mater. Sci. Eng., A, 2013, 559, p 902–908CrossRefGoogle Scholar
  2. 2.
    R.E.D. Mann, R.L. Hexemer, Jr., I.W. Donaldson, and D.P. Bishop, Hot Deformation of an Al-Cu-Mg Powder Metallurgy Alloy, Mater. Sci. Eng., A, 2011, 528, p 5476–5483CrossRefGoogle Scholar
  3. 3.
    P. Krizik, M. Balog, E. Illekova, P. Svec, Sr, I. Matko, M. Stepnek, M. Nosko, and F. Simancik, The Oxidation Behavior of Gas-atomized Al and Al Alloy Powder Green Compacts During Heating before Hot Extrusion and the Suggested Heating Process, J. Mater. Process. Technol., 2014, 214, p 1165–1172CrossRefGoogle Scholar
  4. 4.
    M. Balog, C. Poletti, F. Simancik, M. Walcher, and W. Rajner, The Effect of Native Al2O3 Skin Disruption on Properties of Fine Al Powder Compacts, J. Alloys Compd., 2011, 509S, p S235–S238CrossRefGoogle Scholar
  5. 5.
    R. Irman, Sintered Aluminium with High Strength at Elevated Temperatures, Metallurgia, 1952, 46, p 125–133Google Scholar
  6. 6.
    M. Balog, F. Simancik, M. Walcher, W. Rajner, and C. Poletti, Extruded Al-Al2O3 Composites Formed in Situ during Consolidation of Ultrafine Al Powders: Effect of the Powder Surface Area, Mater. Sci. Eng., A, 2011, 529, p 131–137CrossRefGoogle Scholar
  7. 7.
    M. Balog, P. Krizik, M. Yan, F. Simancik, G.B. Schaffer, and M. Qian, SAP-Like Ultrafine-grained Al Composites Dispersion Strengthened with Nanometric AlN, Mater. Sci. Eng., A, 2013, 588, p 181–187CrossRefGoogle Scholar
  8. 8.
    K. Kondoh, A. Kimura, and R. Watanabe, Effect of Mg on Sintering Phenomenon of Aluminium Alloy Powder Particle, Powder Metall., 2001, 44, p 161–164CrossRefGoogle Scholar
  9. 9.
    Q. Hou, R. Mutharasan, and M. Koczak, Feasibility of Aluminium Nitride Formation in Aluminum Alloys, Mater. Sci. Eng., A, 1995, 195, p 121–129CrossRefGoogle Scholar
  10. 10.
    T.B. Sercombe and G.B. Schaffer, On the Role of Tin in the Nitridation of Aluminium Powder, Scripta Mater., 2006, 55, p 323–326CrossRefGoogle Scholar
  11. 11.
    T.B. Sercombe and G.B. Schaffer, On the Role of Tin in the Infiltration of Aluminium by Aluminium for Rapid Prototyping Applications, Scripta Mater., 2004, 51, p 905–908CrossRefGoogle Scholar
  12. 12.
    P. Yu, M. Balog, M. Yan, and G.B. Schaffer, In situ Fabrication and Mechanical Properties of Al-AlN Composite by Hot Extrusion of Partially Nitrided AA6061 Powder, J. Mater. Res., 2011, 26, p 1719–1725CrossRefGoogle Scholar
  13. 13.
    M. Balog, P. Yu, M. Qian, M. Behulova, P. Svec Sr, and R. Cicka, Nanoscaled Al-AlN Composites Consolidated by Equal Channel Angular Pressing (ECAP) of Partially in situ Nitride Al Powder, Mater. Sci. Eng., A, 2013, 562, p 190–195CrossRefGoogle Scholar
  14. 14.
    D. Kent, G.B. Schaffer, T.B. Sercombe, and J. Drennan, A Novel Method for the Production of Aluminium Nitride, Scripta Mater., 2006, 54, p 2125–2129CrossRefGoogle Scholar
  15. 15.
    W.W. Yang, Z.M. Guo, L.C. Guo, H.Q. Cao, J. Luo, and A.P. Ye, In situ Fabrication and Properties of AlN Dispersion Strengthened 2024 Aluminum Alloy, Int. J. Miner. Metall. Mater., 2014, 21, p 1228–1232CrossRefGoogle Scholar
  16. 16.
    M. Balog, P. Krizik, M. Nosko, Z. Hajovska, M.V.C. Riglos, W. Rajner, D.S. Liu, and F. Simancik, Forged HITEMAL: Al-based MMCs Strengthened with Nanometric Thick Al2O3 Skeleton, Mater. Sci. Eng., A, 2014, 613, p 82–90CrossRefGoogle Scholar
  17. 17.
    M. Cavojsky, M. Balog, J. Dvorak, E. Illekova, P. Svec, P. Krizik, D. Janickovic, and F. Simancik, Microstructure and Properties of Extruded Rapidly Solidified AlCr4.7Fe1.1Si0.3 (at.%) Alloys, Mater. Sci. Eng., A, 2012, 549, p 233–241CrossRefGoogle Scholar
  18. 18.
    C. Poletti, M. Balog, F. Simancik, and H.P. Degischer, High-Temperature Strength of Compacted Submicrometer Aluminium Powder, Acta Mater., 2010, 58, p 3781–3789CrossRefGoogle Scholar
  19. 19.
    N. Guo, B. Luan, F. He, Z. Li, and Q. Liu, Influence of Flake Thickness on the Shape and Distribution of Al2O3 Particles in Al Matrix Composites Fabricated by Flake Powder Metallurgy, Scripta Mater., 2014, 78–79, p 1–4CrossRefGoogle Scholar
  20. 20.
    C.G. Chen, L.C. Guo, J. Luo, J.J. Hao, Z.M. Guo, and A.A. Volinsky, Aluminum Powder Size and Microstructure Effects on Properties of Boron Nitride Reinforced Aluminum Matrix Composites Fabricated by Semi-Solid Powder Metallurgy, Mater. Sci. Eng., A, 2015, 646, p 306–314CrossRefGoogle Scholar
  21. 21.
    M.A. Abdulstaar, E.A. El-Danaf, N.S. Waluyo, and L. Wagner, Severe Plastic Deformation of Commercial Purity Aluminum by Rotary Swaging: Microstructure Evolution and Mechanical Properties, Mater. Sci. Eng., A, 2013, 565, p 351–358CrossRefGoogle Scholar
  22. 22.
    M. Abdulstaar, M. Mhaede, L. Wagner, and M. Wollmann, Corrosion Behaviour of Al 1050 Severely Deformed by Rotary Swaging, Mater. Des., 2014, 57, p 325–329CrossRefGoogle Scholar
  23. 23.
    W.M. Gan, Y.D. Huang, R. Wang, G.F. Wang, A. Srinivasan, H.G. Brokmeier, N. Schell, K.U. Kainer, and N. Hort, Microstructures and Mechanical Properties of Pure Mg Processed by Rotary Swaging, Mater. Des., 2014, 63, p 83–88CrossRefGoogle Scholar
  24. 24.
    Q. Zhang, K.Q. Jin, D. Mu, P.J. Ma, and J. Tian, Rotary Swaging Forming Process of Tube Workpieces, Procedia Eng., 2014, 81, p 2336–2341CrossRefGoogle Scholar
  25. 25.
    T.D. Topping, B. Ahn, Y. Li, S.R. Nutt, and E.J. Lavernia, Influence of Process Parameters on the Mechanical Behaviour of an Ultrafine-Grained Al Alloy, Metall. Mater. Trans. A, 2012, 43A, p 505–519CrossRefGoogle Scholar
  26. 26.
    G.B. Schaffer and B.J. Hall, The Influence of the Atmosphere on the Sintering of Aluminum, Metall. Mater. Trans. A, 2002, 33A, p 3279–3284CrossRefGoogle Scholar
  27. 27.
    R.J. Dashwood and G.B. Schaffer, Powder Forging of a Sintered Al-3.8Cu-1 Mg-0.8Si-0.1Sn Alloy, Mater. Sci. Eng., A, 2002, 323, p 206–212CrossRefGoogle Scholar
  28. 28.
    H. Jazaeri and F.J. Humphreys, The Transition from Discontinuous to Continuous Recrystallization in Some Aluminium Alloys—Annealing Behaviour, Acta Mater., 2004, 52, p 3251–3262CrossRefGoogle Scholar
  29. 29.
    N. Hansen, Dispersion Strengthened Aluminium Powder Products for Nuclear Application, Powder Metall., 1967, 10, p 94CrossRefGoogle Scholar
  30. 30.
    B. Martin, S. Frantisek, B. Otto, and G. Requena, ECAP vs. Direct Extrusion—Techniques for Consolidation of Ultra-Fine Al Particles, Mater. Sci. Eng., A, 2009, 504, p 1–7CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Institute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijingChina
  2. 2.School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijingChina
  3. 3.School of Civil and Environmental EngineeringUniversity of Science and Technology BeijingBeijingChina
  4. 4.Department of Mechanical EngineeringUniversity of South FloridaTampaUSA

Personalised recommendations