Grain Boundary Wetting by a Second Solid Phase in Ti-Fe Alloys

  • A. S. Gornakova
  • B. B. Straumal
  • A. N. Nekrasov
  • A. Kilmametov
  • N. S. Afonikova


The microstructure of Ti-Fe polycrystals has been studied between 595 and 815 °C in the concentration interval between 1 and 9 wt.% Fe. In these conditions, two phases, namely hexagonal α(Ti, Fe) and cubic β(Ti, Fe), are in equilibrium. The α(Ti, Fe) phase forms either continuous or discontinuous layers in the β(Ti, Fe)/β(Ti, Fe) grain boundaries (GBs). Continuous layers correspond to the complete wetting of β(Ti, Fe)/β(Ti, Fe) GBs by a second solid phase α(Ti, Fe). Discontinuous layers correspond to the incomplete (or partial) GB wetting by a second solid phase. The temperature dependences of the portion of completely wetted GBs as well as that of the thickness of continuous GB layer of α(Ti, Fe) phase have been measured. Both values monotonously increase with increasing temperature.


grain boundaries phase transitions titanium alloys wetting 



The work was performed under the partial financial support of Russian Foundation for Basic Research (Grants 16-53-12007, 16-03-00285 and 18-03-00067), German Science Foundation (Grants IV 98/5-1, HA 1344/32-1), Ministry of Education and Science of the Russian Federation in the framework of the Program to Increase the Competitiveness of NUST “MISiS,” and Karlsruhe Nano Micro Facility.


  1. 1.
    R. Boyer, E.W. Collings, and G. Welsch, Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, 1994Google Scholar
  2. 2.
    T.B. Massalski, Ed., Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, 1990Google Scholar
  3. 3.
    O.A. Kaibyshev and F.Z. Utjashev, Superplasticity, Structure Refinement and Processing of Difficult Deformable Alloys, Nauka, Moscow, 2002Google Scholar
  4. 4.
    O.A. Kaibyshev, Superplasticity of Industrial Alloys, Metallurgy, Moscow, 1984Google Scholar
  5. 5.
    M.J. Donachie, Jr., Titanium: A Technical Guide, 2nd ed., ASM International, Materials Park, 2000Google Scholar
  6. 6.
    B.B. Straumal, O.A. Kogtenkova, A.S. Gornakova, V.G. Sursaeva, and B. Baretzky, Review: Grain Boundary Faceting-Roughening Phenomena, J. Mater. Sci., 2016, 51, p 382–404CrossRefGoogle Scholar
  7. 7.
    B.B. Straumal, A.A. Mazilkin, and B. Baretzky, Grain Boundary Complexions and Pseudopartial Wetting, Curr. Opin. Solid State Mater. Sci., 2016, 20, p 247–256CrossRefGoogle Scholar
  8. 8.
    G.A. López, E.J. Mittemeijer, and B.B. Straumal, Grain Boundary Wetting by a Solid Phase; Microstructural Development in a Zn-5 wt% Al Alloy, Acta. Mater., 2004, 52, p 4537–4545CrossRefGoogle Scholar
  9. 9.
    A.S. Gornakova, B.B. Straumal, A.L. Petelin, and A.B. Straumal, Solid-Phase Wetting at Grain Boundaries in the Zr-Nb System, Bull. Russ. Acad. Sci. Phys., 2012, 76, p 102–105CrossRefGoogle Scholar
  10. 10.
    O.A. Kogtenkova, B.B. Straumal, S.G. Protasova, A.S. Gornakova, P. Zięba, and T. Czeppe, Effect of the Wetting of Grain Boundaries on the Formation of a Solid Solution in the Al-Zn System, JETP Lett., 2012, 96, p 380–384CrossRefGoogle Scholar
  11. 11.
    B.B. Straumal, A.S. Gornakova, Y.O. Kucheev, B. Baretzky, and A.N. Nekrasov, Grain Boundary Wetting by a Second Solid Phase in the Zr-Nb Alloys, J. Mater. Eng. Perform., 2012, 21, p 721–724CrossRefGoogle Scholar
  12. 12.
    R. Ray, B.C. Giessen, and N.J. Grant, The Constitution of Metastable Titanium-rich Ti-Fe Alloys: An Order-Disorder Transition, Metall. Trans., 1972, 3, p 627–629CrossRefGoogle Scholar
  13. 13.
    B.W. Levinger, Lattice Parameter of Beta Titanium at Room Temperature, Trans. Am. Inst. Min. Met. Eng., 1953, 197, p 195–200Google Scholar
  14. 14.
    S.G. Fedotov, N.F. Kvasova, and M.I. Ermolova, Decomposition of the Metastable Solid Solution of Titanium with Iron, Dokl. Akad. Nauk SSSR, 1974, 216(2), p 363–366Google Scholar
  15. 15.
    L.N. Guseva and L.K. Dolinskaya, Metastable Phases in Titanium Alloys with Group VIII, Elements Quenched from the β-Region, Izv. Akad. Nauk SSSR Met., 1974, 6, p 195–202Google Scholar
  16. 16.
    A.B. Straumal, B.S. Bokstein, A.L. Petelin, B.B. Straumal, B. Baretzky, A.O. Rodin, and A.N. Nekrasov, Apparently Complete Grain Boundary Wetting in Cu-In Alloys, J. Mater. Sci., 2012, 47, p 8336–8343CrossRefGoogle Scholar
  17. 17.
    R.F. Peart, Effect of Pressure on the Diffusion of Fe in Ti and Ti + 10% Fe, Phys. Stat. Sol., 1967, 20, p 545–550CrossRefGoogle Scholar
  18. 18.
    B.A. Kolachev and V.S. Lyasotskaya, Correlation Between Diagrams of Isothermal and Anisothermal Transformations and Phase Composition Diagram of Hardened Titanium Alloys, Metal Sci. Heat Treat., 2003, 45, p 119–126CrossRefGoogle Scholar
  19. 19.
    Y.B. Egorova, A.A. Il’in, B.A. Kolachev, V.K. Nosov, and A.M. Mamonov, Effect of the Structure on the Cutability of Titanium Alloys, Metal Sci. Heat Treat., 2003, 45, p 134–139CrossRefGoogle Scholar
  20. 20.
    B.A. Kolachev, M.G. Veitsman, and L.N. Gus’kova, Structure and Mechanical Properties of Annealed α + β Titanium Alloys, Metal Sci. Heat Treat., 1983, 25, p 626–631CrossRefGoogle Scholar
  21. 21.
    A.V. Fishgoit, V.M. Maistrov, and M.A. Rozanov, Interaction of Short Cracks with the Structure of Metals, Sov. Mater. Sci., 1988, 24, p 247–251CrossRefGoogle Scholar
  22. 22.
    V.N. Bobovnikov, V.V. Luk’yanenko, and A.V. Fishgoit, Effect of Particles of the Insoluble Phase Al9FeNi on the Kinetics of Fatigue Crack Propagation in Alloy AK4-1, Metal Sci. Heat Treat., 1982, 24, p 191–194CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • A. S. Gornakova
    • 1
  • B. B. Straumal
    • 1
    • 2
    • 3
  • A. N. Nekrasov
    • 4
  • A. Kilmametov
    • 2
  • N. S. Afonikova
    • 1
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.Institut für NanotechnologieKarlsruher Institut für TechnologieEggenstein-LeopoldshafenGermany
  3. 3.National University of Science and Technology « MISIS»MoscowRussia
  4. 4.Institute of Experimental MineralogyRussian Academy of SciencesChernogolovkaRussia

Personalised recommendations