Skip to main content
Log in

Effects of TiB2 Particle and Short Fiber Sizes on the Microstructure and Properties of TiB2-Reinforced Composite Coatings

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, particle and short fiber-reinforced titanium matrix composite coatings are prepared via laser in situ technique using (0.5 and 50 μm) TiB2 and Ti powder as cladding materials. The microstructure and properties of the composite coatings are studied, and the changing mechanism of the microstructure is discussed. The results reveal that particle agglomeration is prone to appear with using fine TiB2 particles. Decomposition of the particles preferentially occurs with using coarse TiB2 particles. The cracks and pores on the surface of the coating are formed at a lower laser energy density. With the increase in the laser energy density, cracking on the surface of the coating diminishes, but the coating exhibits depression behavior. The depression extent of the coating using fine TiB2 particle as the reinforcement is much less than that of the coating using coarse TiB2 particle. Moreover, the size of the aggregate and the tendency of cracking can be reduced with the increase in Ti addition. Meanwhile, short TiB fiber bundles are formed by the diffusion mechanism of rod aggregate, and randomly oriented TiB short fibers are formed mainly by the dissolution–precipitation mechanism of fine TiB2 particles. Moreover, the growth of short TiB fibers can be in an alternating manner between B27 and Bf structures. The micro-hardness and wear resistance of the coatings are evidently higher than that of the titanium alloy substrate. The wear resistance of the large size TiB2 coating is higher than that of the small size TiB2 coating under the condition of low load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. L.J. Huang, L. Geng, and H.X. Peng, Microstructurally Inhomogeneous Composites: Is a Homogeneous Reinforcement Distribution Optimal, Prog. Mater. Sci., 2015, 71, p 93-168

    Article  Google Scholar 

  2. A.P.I. Popoola, L. Phume, S. Pityana, and V.S. Aigbodion, In-situ Formation of Laser Ti6Al4V-TiB Composite Coatings on Ti6Al4V Alloy for Biomedical Application, Surf. Coat. Technol., 2016, 285, p 161-170

    Article  Google Scholar 

  3. B.J. Choi, I.Y. Kim, Y.Z. Lee, and Y.J. Kim, Microstructure and Friction/Wear Behavior of (TiB + TiC) Particulate-Reinforced Titanium Matrix Composites, Wear, 2014, 318, p 68-77

    Article  Google Scholar 

  4. J. Li, X. Luo, and G.J. Li, Effect of Y2O3 on the Sliding Wear Resistance of TiB/TiC-Reinforced Composite Coatings Fabricated by Laser Cladding, Wear, 2014, 310, p 72-82

    Article  Google Scholar 

  5. T. Prater, A. Strauss, G. Cook, B. Gibson, and C. Cox, A Comparative Evaluation of the Wear Resistance of Various Tool Materials in Friction Stir Welding of Metal Matrix Composites, J. Mater. Eng. Perform., 2013, 22, p 1807-1813

    Article  Google Scholar 

  6. K.C. Xie, C.H. Jiang, and W.J. Lu, The Influence of Shot Peening on the Surface Properties of (TiB + TiC)/Ti-6Al-4V, Appl. Surf. Sci., 2013, 280, p 981-988

    Article  Google Scholar 

  7. P. Abachi, A. Masoudi, and K. Purazrang, Dry Sliding Wear Behavior of SiCP/QE22 Magnesium Alloy Matrix Composites, Mater. Sci. Eng. A, 2006, 435-436, p 653-657

    Article  Google Scholar 

  8. I.Y. Kim, B.J. Choi, Y.J. Kim, and Y.Z. Lee, Friction and Wear Behavior of Titanium Matrix (TiB + TiC) Composites, Wear, 2011, 271, p 1962-1965

    Article  Google Scholar 

  9. R. Dunja, B.D. Narendra, and G. Janez, Laser Coating of Aluminum Alloy EN AW 6082-T651 with TiB2 and TiC: Microstructure and Mechanical Properties, Appl. Surf. Sci., 2013, 282, p 914-922

    Article  Google Scholar 

  10. S. Cygan, L. Jaworska, P. Putyra, W. Ratuszek, J. Cyboron, and P. Klimczyk, Thermal Stability and Coefficient of Friction of the Diamond Composites with the Titanium Compound Bonding Phase, J. Mater. Eng. Perform., 2017, 26, p 2593-2598

    Article  Google Scholar 

  11. L.K. Sylvie, W. Michael, H. Nadia, C. Limei, M. Leo, and B. Frederic, Interfaces and Defects in a Successfully Hot-Rolled Steel-Based Composite Fe-TiB2, Acta Mater., 2015, 98, p 297-305

    Article  Google Scholar 

  12. H. Zhang, H. Springer, R. Aparicio-Fernandez, and D. Raabe, Improving the Mechanical Properties of Fe-TiB2 High Modulus Steels Through Controlled Solidification Processes, Acta Mater., 2016, 118, p 187-195

    Article  Google Scholar 

  13. M.K. Alam, A. Edrisy, J. Urbanic, and J. Pineault, Microhardness and Stress Analysis of Laser-Cladded AISI, 420 Martensitic Stainless Steel, J. Mater. Eng. Perform., 2017, 26, p 1076-1084

    Article  Google Scholar 

  14. B.C. Zhang, G.J. Bi, S.R. Nai, C.N. Sun, and J. Wei, Microhardness and Microstructure Evolution of TiB2 Reinforced Inconel 625/TiB2 Composite Produced by Selective Laser Melting, Opt. Laser Technol., 2016, 80, p 186-195

    Article  Google Scholar 

  15. X.Z. Zhan, Y. Liu, W.M. Ou, C. Gu, and Y.H. Wei, The Numerical and Experimental Investigation of the Multi-Layer Laser-MIG Hybrid Welding for Fe36Ni Invar Alloy, J. Mater. Eng. Perform., 2015, 24, p p4948-p4957

    Article  Google Scholar 

  16. P. Nie, A. Ojooa, and Z.G. Li, Modeling Analysis of Laser Cladding of a Nickel-Based Superalloy, Surf. Coat. Technol., 2014, 258, p 1048-1059

    Article  Google Scholar 

  17. F.C.R. Hernandez, A.O. Okonkwo, V. Kadekar, T. Metz, and N. Badi, Lasercladding: The Alternative for Field Thermite Welds Life Extension, Mater. Des., 2016, 111, p 165-173

    Article  Google Scholar 

  18. K.Y. Luo, X. Jing, J. Sheng, G.F. Sun, Z. Yan, and J.Z. Lu, Characterization and Analyses on Micro-Hardness, Residual Stress and Microstructure in Lasercladding Coating of 316L Stainless Steel Subjected to Massive LSP Treatment, J. Alloys Compd., 2016, 673, p 158-169

    Article  Google Scholar 

  19. B. Liu and S.Y. Dong, Stress Evaluation of Lasercladding Coating with Critically Refracted Longitudinal Wave Based on Cross Correlation Function, Appl. Acoust., 2016, 101, p 98-103

    Article  Google Scholar 

  20. F. Parisa and K. Radovan, An Experimental–Numerical Investigation of Heat Distribution and Stressfield in Single- and Multi-Track Lasercladding by a High-Power Direct Diode Laser, Opt. Laser Technol., 2014, 63, p 154-168

    Article  Google Scholar 

  21. A.S. Rogachev, S.G. Vadchenko, F. Baras, O. Politano, S. Rouvimov, N.V. Sachkova, and A.S. Mukasyan, Structure Evolution and Reactionmechanism in the Ni/Al Reactive Multilayer Nanofoils, Acta Mater., 2014, 66, p 86-96

    Article  Google Scholar 

  22. V.C. Roman and C. Stefano, Calculation of Solubility in Titanium Alloys from First Principles, Acta Mater., 2009, 57, p 5314-5323

    Article  Google Scholar 

  23. K. Kawabata, E. Sato, and K. Kuribayashi, High Temperature Deformation with Diffusional and Plastic Accommodation in Ti/TiB Whisker-Reinforce In situ Composites, Acta Mater., 2003, 51, p 1909-1922

    Article  Google Scholar 

  24. Y.H. Lin, J.H. Yao, Y.P. Lei, H.G. Fu, and L. Wang, Microstructure and Properties of TiB2-TiB Reinforced Titanium Matrix Composite Coating by Laser Cladding, Opt. Laser Eng., 2016, 86, p 216-227

    Article  Google Scholar 

  25. C.J. Zhang, F.T. Kong, L.J. Xu, E.T. Zhao, S.L. Xiao, Y.Y. Chen, N.J. Deng, W. Ge, and G.J. Xu, Temperature Dependence of Tensile Properties and Fracture Behavior of as Rolled TiB/Ti Composite Sheet, Mater. Sci. Eng. A, 2012, 556, p 962-969

    Article  Google Scholar 

  26. B.J. Kooi, Y.T. Pei, and JThMD Hosson, The Evolution of Microstructure in a Laser Clad TiB-Ti Composite Coating, Acta Mater., 2003, 51, p 831-845

    Article  Google Scholar 

  27. J. Du, A.P. Sanders, V. Jindal, and K.S.R. Chandran, Rapid In situ Formation and Densification of Titanium Boride (TiB) Nano-Ceramic via Transient Liquid Phase in Electric Field Activated Sintering, Scr. Mater., 2016, 123, p 95-99

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful for financial supports from National Key R&D Program of China (No. 2017YFB1103601), National Natural Science Foundation of China (No. 51705464) and Post-Doctor Research Fund of China (No. 2017M610376).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Yao, J., Wang, L. et al. Effects of TiB2 Particle and Short Fiber Sizes on the Microstructure and Properties of TiB2-Reinforced Composite Coatings. J. of Materi Eng and Perform 27, 1876–1889 (2018). https://doi.org/10.1007/s11665-018-3291-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3291-0

Keywords

Navigation