Skip to main content

Advertisement

Log in

Microstructure and Mechanical Properties of W-ZrC Composites Synthesized by Reactive Melt Infiltration of Zr2Cu into Porous Preforms from Partially Carburized W Powders

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

W-ZrC composites with different W contents from 48 to 73 vol.% have been synthesized by reactive melt infiltration of Zr2Cu melt into porous preforms from partially carburized W powders at 1300 °C for 1 h in vacuum. The influences of carbon content and porosity in the preforms on microstructure and mechanical properties of W-ZrC composites are investigated. Cold isostatic pressing followed by pre-sintering process is used to produce porous preforms with suitable porosities of 53.6-47% under a pressure of 100 MPa to allow sufficient penetration of Zr2Cu melt into the preforms. Small amounts of Cu-rich phases form in the synthesized W-ZrC composites after a complete reaction of y/2xZr2Cu(l) + WC y (s) = y/xZrC x (s) + W(s) + y/2xCu(l). These Cu-rich phases are distributed not only at the phase boundaries of W matrix and ZrC grains, but also in the interior of ZrC x grains. With decreasing W content from 73 to 48 vol.% in the W-ZrC composites, the flexural strength and fracture toughness increase from 519 to 657 MPa and from 9.1 to 10.6 MPa m1/2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Upadhya, J.-M. Yang, and W.P. Hoffman, Materials for Ultrahigh Temperature Structural Applications, Am. Ceram. Soc. Bull., 1997, 76(12), p 51–56

    Google Scholar 

  2. J.D. Walton, Jr, and C. Mason, Jr., Materials Problems Associated with Uncooled Rocket Nozzles, Corrosion, 1960, 16(8), p 371t–374t

    Article  Google Scholar 

  3. T. Jackson, D. Eklund, and A. Fink, High Speed Propulsion: Performance Advantage of Advanced Materials, J. Mater. Sci., 2004, 39(19), p 5905–5913

    Article  Google Scholar 

  4. G.-M. Song, Y.-J. Wang, and Y. Zhou, The Mechanical and Thermophysical Properties of ZrC/W Composites at Elevated Temperature, Mater. Sci. Eng. A, 2002, 334(1), p 223–232

    Article  Google Scholar 

  5. E. Lassner and W.-D. Schubert, Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Springer, Berlin, 2012

    Google Scholar 

  6. G. Song, Y. Wang, and Y. Zhou, Elevated Temperature Ablation Resistance and Thermophysical Properties of Tungsten Matrix Composites Reinforced with ZrC Particles, J. Mater. Sci., 2001, 36(19), p 4625–4631

    Article  Google Scholar 

  7. H. Yun, Effect of Composition and Microstructure on the Creep and Stress-Rupture Behavior of Tungsten Alloy Wires at 1366–1500 K, Mater. Sci. Eng. A, 1993, 165(1), p 65–74

    Article  Google Scholar 

  8. A. Luo, K.S. Shin, and D.L. Jacobson, High Temperature Tensile Properties of W-Re-ThO2 Alloys, Mater. Sci. Eng. A, 1991, 148(2), p 219–229

    Article  Google Scholar 

  9. M. Mabuchi, K. Okamoto, N. Saito, M. Nakanishi, Y. Yamada, T. Asahina, and T. Igarashi, Tensile Properties at Elevated Temperature of W-1% La2O3, Mater. Sci. Eng. A, 1996, 214(1–2), p 174–176

    Article  Google Scholar 

  10. G. Song, Y. Zhou, and Y. Wang, The Microstructure and Elevated Temperature Strength of Tungsten-Titanium Carbide Composite, J. Mater. Sci., 2002, 37(16), p 3541–3548

    Article  Google Scholar 

  11. D. Lee, M.A. Umer, H.J. Ryu, and S.H. Hong, Elevated Temperature Ablation Resistance of HfC Particle-Reinforced Tungsten Composites, Int. J. Refract. Met. Hard Mater., 2014, 43, p 89–93

    Article  Google Scholar 

  12. S.E. Landwehr, G.E. Hilmas, W.G. Fahrenholtz, I.G. Talmy, and S.G. DiPietro, Microstructure and Mechanical Characterization of ZrC-Mo Cermets Produced by Hot Isostatic Pressing, Mater. Sci. Eng. A, 2008, 497(1), p 79–86

    Article  Google Scholar 

  13. B. Metals, Ceramics Information Center, Engineering Data on Selected Ceramics, Vol II, Carbides Battelle Columbus Laboratories, Columbus, 1979

    Google Scholar 

  14. A.E. Mchale, Phase Equilibria Diagrams, American Ceramic Society, Westerville, 1994

    Google Scholar 

  15. Y. Touloukian, R. Kirby, R. Taylor, and P. Desai, Thermophysical Properties of Matter-the TPRC Data Series. Volume 12. Thermal Expansion Metallic Elements and Alloys, Plenum Press, New York, 1975, p 354

    Google Scholar 

  16. Y.S. Touloukian, R. Kirby, E. Taylor, and T. Lee, Thermophysical Properties of Matter-the TPRC Data Series. Volume 13. Thermal Expansion-Nonmetallic Solids, Plenum Press, New York, 1977, p 926

    Google Scholar 

  17. I. Barin and G. Platzki, Thermochemical Data of Pure Substances, Wiley Online Library, Weinheim, 1989, p 1788

    Google Scholar 

  18. P. Zhou, Y. Peng, Y. Du, S. Wang, and G. Wen, Thermodynamic Modeling of the C-W-Zr System, Int. J. Refract. Met. Hard Mater., 2015, 50, p 274–281

    Article  Google Scholar 

  19. S.C. Zhang, G. Hilmas, and W. Fahrenholtz, Zirconium Carbide-Tungsten Cermets Prepared by in Situ Reaction Sintering, J. Am. Ceram. Soc., 2007, 90(6), p 1930–1933

    Article  Google Scholar 

  20. M.B. Dickerson, R.L. Snyder, and K.H. Sandhage, Dense, Near Net-Shaped, Carbide/Refractory Metal Composites at Modest Temperatures by the Displacive Compensation of Porosity (DCP) Method, J. Am. Ceram. Soc., 2002, 85(3), p 730–732

    Article  Google Scholar 

  21. M. Dickerson, P. Wurm, J. Schorr, W. Hoffman, P. Wapner, and K. Sandhage, Near Net-Shape, Ultra-High Melting, Recession-Resistant ZrC/W-Based Rocket Nozzle Liners via the Displacive Compensation of Porosity (DCP) Method, J. Mater. Sci., 2004, 39(19), p 6005–6015

    Article  Google Scholar 

  22. A. Zaitsev, N. Zaitseva, Y.P. Alekseeva, E. Kuril’chenko, and S. Dunaev, Thermodynamic Properties of Melts and Phase Equilibria in the Copper-zirconium System, Inorg. Mater., 2003, 39(8), p 816–825

    Article  Google Scholar 

  23. D. Ye and J. Hu, Practical Handbook of Energetic Data for Inorganic Compounds, Metallurgical industry press, Beijing, 2002, p 1204

    Google Scholar 

  24. S.-E. Hsu, C.-I. Chen, S. Yue, and F.K.-W. Li, Mechanical and Thermal Properties of Cu-Infiltrated P/M Tungsten Nozzles, J. Spacecr. Rockets, 1977, 14(4), p 207–211

    Article  Google Scholar 

  25. M. Ahangarkani, K. Zangeneh-Madar, S. Borji, and Z. Valefi, Microstructural Study on Ultra-High Temperature Erosion Mechanism of Infiltrated W-10wt% Cu Composite, Int. J. Refract. Met. Hard Mater., 2017, 67(6), p 115–124

    Article  Google Scholar 

  26. D.W. Lipke, Y. Zhang, Y. Liu, B.C. Church, and K.H. Sandhage, Near Net-Shape/Net-Dimension ZrC/W-Based Composites with Complex Geometries via Rapid Prototyping and Displacive Compensation of Porosity, J. Eur. Ceram. Soc., 2010, 30(11), p 2265–2277

    Article  Google Scholar 

  27. M. Adabi and A. Amadeh, Effect of Infiltration Parameters on Composition of W-ZrC Composites Produced by Displacive Compensation of Porosity (DCP) Method, Int. J. Refract. Met. Hard Mater., 2011, 29(1), p 31–37

    Article  Google Scholar 

  28. Y.-W. Zhao, Y.-J. Wang, H.-X. Peng, and Y. Zhou, Dense Sub-Micron-Sized ZrC-W Composite Produced by Reactive Melt Infiltration at 1200 °C, Int. J. Refract. Met. Hard Mater., 2012, 30(1), p 196–199

    Article  Google Scholar 

  29. S. Zhang, S. Wang, W. Li, Y. Zhu, and Z. Chen, Microstructure and Properties of W-ZrC Composites Prepared by the Displacive Compensation of Porosity (DCP) Method, J. Alloys Compd., 2011, 509(33), p 8327–8332

    Article  Google Scholar 

  30. M.B. Dickerson, R.R. Unocic, K.T. Guerra, M.J. Timberlake, and K.H. Sandhage, Fabrication of Dense Carbide/Refractory Metal Composites of Near Net Shape at Modest Temperatures by the Prima-DCP Process, Ceram. Trans., 2000, 115, p 25–31

    Google Scholar 

  31. Y.-W. Zhao, Y.-J. Wang, X.-Y. Jin, P. Jia, L. Chen, Y. Zhou, G.-M. Song, J.-P. Li, and Z.-H. Feng, Microstructure and Properties of ZrC-W Composite Fabricated by Reactive Infiltration of Zr2Cu into WC/W Preform, Mater. Chem. Phys., 2015, 153, p 17–22

    Article  Google Scholar 

  32. D. Wang, L. Chen, Y.-J. Wang, S.-J. Huo, J.-H. Ouyang, and Y. Zhou, W-ZrC Composites Prepared by Reactive Melt Infiltration of Zr2Cu Alloy into Partially Carburized W Preforms, Int. J. Refract. Met. Hard Mater., 2017, 67, p 125–128

    Article  Google Scholar 

  33. H.O. Pierson, Handbook of Refractory Carbides and Nitrides, Elsevier, Amsterdam, 1996, p 106

    Google Scholar 

  34. H. Taimatsu, S. Sugiyama, and Y. Kodaira, Synthesis of W2C by Reactive Hot Pressing and Its Mechanical Properties, Mater. Trans., 2008, 49(6), p 1256–1261

    Article  Google Scholar 

  35. S.W. Yih and C.T. Wang, Tungsten: Sources, Metallurgy, Properties, and Applications, Plenum Publishing Corporation, New York, 1979, p 11

    Book  Google Scholar 

  36. D.W. Lipke, Y. Zhang, Y. Cai, and K.H. Sandhage, Intragranular Tungsten/Zirconium Carbide Nanocomposites via a Selective Liquid/Solid Displacement Reaction, J. Am. Ceram. Soc., 2012, 95(9), p 2769–2772

    Article  Google Scholar 

  37. Y.-W. Zhao, Y.-J. Wang, Y. Zhou, H.-X. Peng, and G.-M. Song, Ternary Phase ZrxCuyCz in Reactively Infiltrated ZrC/W Composite, J. Am. Ceram. Soc., 2011, 94(10), p 3178–3180

    Article  Google Scholar 

  38. A. Jarfors, Solubility of Copper in Titanium Carbide, Mater. Sci. Technol., 1996, 12(12), p 990–994

    Article  Google Scholar 

  39. R. Kerans, K. Mazdiyasni, R. Ruh, and H. Lipsitt, Solubility of Metals in Substoichiometric TiC1−x, J. Am. Ceram. Soc., 1984, 67(1), p 34–38

    Article  Google Scholar 

  40. M. Greger, L. Čížek, and M. Widomská, Structure and Mechanical Properties of Formed Tungsten Based Materials, J. Mater. Process. Technol., 2004, 157, p 683–687

    Article  Google Scholar 

  41. W.D. Klopp, and W.R. Witzke, Mechanical Properties and Recrystallization Behavior of Electron-Beam-Melted Tungsten Compared with Arc-Melted Tungsten, NASA TN D-3232, Lewis Research Center, Cleveland, Ohio, 1966, p 1–34

  42. P.R.F. Bunshah, Mechanical Properties of Refractory Compound Films, AIP Conf. Proc., 1986, 149(1), p 130–156

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51621091, 51172052 and 51472060) and Program for New Century Excellent Talents in University (No. NCET-13-0177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Jin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Wang, YJ., Huo, SJ. et al. Microstructure and Mechanical Properties of W-ZrC Composites Synthesized by Reactive Melt Infiltration of Zr2Cu into Porous Preforms from Partially Carburized W Powders. J. of Materi Eng and Perform 27, 1866–1875 (2018). https://doi.org/10.1007/s11665-018-3287-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3287-9

Keywords

Navigation