Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1866–1875 | Cite as

Microstructure and Mechanical Properties of W-ZrC Composites Synthesized by Reactive Melt Infiltration of Zr2Cu into Porous Preforms from Partially Carburized W Powders

  • Dong Wang
  • Yu-Jin Wang
  • Si-Jia Huo
  • Yan-Wei Zhao
  • Jia-Hu Ouyang
  • Gui-Ming Song
  • Yu Zhou


W-ZrC composites with different W contents from 48 to 73 vol.% have been synthesized by reactive melt infiltration of Zr2Cu melt into porous preforms from partially carburized W powders at 1300 °C for 1 h in vacuum. The influences of carbon content and porosity in the preforms on microstructure and mechanical properties of W-ZrC composites are investigated. Cold isostatic pressing followed by pre-sintering process is used to produce porous preforms with suitable porosities of 53.6-47% under a pressure of 100 MPa to allow sufficient penetration of Zr2Cu melt into the preforms. Small amounts of Cu-rich phases form in the synthesized W-ZrC composites after a complete reaction of y/2xZr2Cu(l) + WC y (s) = y/xZrC x (s) + W(s) + y/2xCu(l). These Cu-rich phases are distributed not only at the phase boundaries of W matrix and ZrC grains, but also in the interior of ZrC x grains. With decreasing W content from 73 to 48 vol.% in the W-ZrC composites, the flexural strength and fracture toughness increase from 519 to 657 MPa and from 9.1 to 10.6 MPa m1/2, respectively.


mechanical properties microstructure partially carburized W powders reactive melt infiltration W-ZrC composite 



This work was financially supported by the National Natural Science Foundation of China (Nos. 51621091, 51172052 and 51472060) and Program for New Century Excellent Talents in University (No. NCET-13-0177).


  1. 1.
    K. Upadhya, J.-M. Yang, and W.P. Hoffman, Materials for Ultrahigh Temperature Structural Applications, Am. Ceram. Soc. Bull., 1997, 76(12), p 51–56Google Scholar
  2. 2.
    J.D. Walton, Jr, and C. Mason, Jr., Materials Problems Associated with Uncooled Rocket Nozzles, Corrosion, 1960, 16(8), p 371t–374tCrossRefGoogle Scholar
  3. 3.
    T. Jackson, D. Eklund, and A. Fink, High Speed Propulsion: Performance Advantage of Advanced Materials, J. Mater. Sci., 2004, 39(19), p 5905–5913CrossRefGoogle Scholar
  4. 4.
    G.-M. Song, Y.-J. Wang, and Y. Zhou, The Mechanical and Thermophysical Properties of ZrC/W Composites at Elevated Temperature, Mater. Sci. Eng. A, 2002, 334(1), p 223–232CrossRefGoogle Scholar
  5. 5.
    E. Lassner and W.-D. Schubert, Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Springer, Berlin, 2012Google Scholar
  6. 6.
    G. Song, Y. Wang, and Y. Zhou, Elevated Temperature Ablation Resistance and Thermophysical Properties of Tungsten Matrix Composites Reinforced with ZrC Particles, J. Mater. Sci., 2001, 36(19), p 4625–4631CrossRefGoogle Scholar
  7. 7.
    H. Yun, Effect of Composition and Microstructure on the Creep and Stress-Rupture Behavior of Tungsten Alloy Wires at 1366–1500 K, Mater. Sci. Eng. A, 1993, 165(1), p 65–74CrossRefGoogle Scholar
  8. 8.
    A. Luo, K.S. Shin, and D.L. Jacobson, High Temperature Tensile Properties of W-Re-ThO2 Alloys, Mater. Sci. Eng. A, 1991, 148(2), p 219–229CrossRefGoogle Scholar
  9. 9.
    M. Mabuchi, K. Okamoto, N. Saito, M. Nakanishi, Y. Yamada, T. Asahina, and T. Igarashi, Tensile Properties at Elevated Temperature of W-1% La2O3, Mater. Sci. Eng. A, 1996, 214(1–2), p 174–176CrossRefGoogle Scholar
  10. 10.
    G. Song, Y. Zhou, and Y. Wang, The Microstructure and Elevated Temperature Strength of Tungsten-Titanium Carbide Composite, J. Mater. Sci., 2002, 37(16), p 3541–3548CrossRefGoogle Scholar
  11. 11.
    D. Lee, M.A. Umer, H.J. Ryu, and S.H. Hong, Elevated Temperature Ablation Resistance of HfC Particle-Reinforced Tungsten Composites, Int. J. Refract. Met. Hard Mater., 2014, 43, p 89–93CrossRefGoogle Scholar
  12. 12.
    S.E. Landwehr, G.E. Hilmas, W.G. Fahrenholtz, I.G. Talmy, and S.G. DiPietro, Microstructure and Mechanical Characterization of ZrC-Mo Cermets Produced by Hot Isostatic Pressing, Mater. Sci. Eng. A, 2008, 497(1), p 79–86CrossRefGoogle Scholar
  13. 13.
    B. Metals, Ceramics Information Center, Engineering Data on Selected Ceramics, Vol II, Carbides Battelle Columbus Laboratories, Columbus, 1979Google Scholar
  14. 14.
    A.E. Mchale, Phase Equilibria Diagrams, American Ceramic Society, Westerville, 1994Google Scholar
  15. 15.
    Y. Touloukian, R. Kirby, R. Taylor, and P. Desai, Thermophysical Properties of Matter-the TPRC Data Series. Volume 12. Thermal Expansion Metallic Elements and Alloys, Plenum Press, New York, 1975, p 354Google Scholar
  16. 16.
    Y.S. Touloukian, R. Kirby, E. Taylor, and T. Lee, Thermophysical Properties of Matter-the TPRC Data Series. Volume 13. Thermal Expansion-Nonmetallic Solids, Plenum Press, New York, 1977, p 926Google Scholar
  17. 17.
    I. Barin and G. Platzki, Thermochemical Data of Pure Substances, Wiley Online Library, Weinheim, 1989, p 1788Google Scholar
  18. 18.
    P. Zhou, Y. Peng, Y. Du, S. Wang, and G. Wen, Thermodynamic Modeling of the C-W-Zr System, Int. J. Refract. Met. Hard Mater., 2015, 50, p 274–281CrossRefGoogle Scholar
  19. 19.
    S.C. Zhang, G. Hilmas, and W. Fahrenholtz, Zirconium Carbide-Tungsten Cermets Prepared by in Situ Reaction Sintering, J. Am. Ceram. Soc., 2007, 90(6), p 1930–1933CrossRefGoogle Scholar
  20. 20.
    M.B. Dickerson, R.L. Snyder, and K.H. Sandhage, Dense, Near Net-Shaped, Carbide/Refractory Metal Composites at Modest Temperatures by the Displacive Compensation of Porosity (DCP) Method, J. Am. Ceram. Soc., 2002, 85(3), p 730–732CrossRefGoogle Scholar
  21. 21.
    M. Dickerson, P. Wurm, J. Schorr, W. Hoffman, P. Wapner, and K. Sandhage, Near Net-Shape, Ultra-High Melting, Recession-Resistant ZrC/W-Based Rocket Nozzle Liners via the Displacive Compensation of Porosity (DCP) Method, J. Mater. Sci., 2004, 39(19), p 6005–6015CrossRefGoogle Scholar
  22. 22.
    A. Zaitsev, N. Zaitseva, Y.P. Alekseeva, E. Kuril’chenko, and S. Dunaev, Thermodynamic Properties of Melts and Phase Equilibria in the Copper-zirconium System, Inorg. Mater., 2003, 39(8), p 816–825CrossRefGoogle Scholar
  23. 23.
    D. Ye and J. Hu, Practical Handbook of Energetic Data for Inorganic Compounds, Metallurgical industry press, Beijing, 2002, p 1204Google Scholar
  24. 24.
    S.-E. Hsu, C.-I. Chen, S. Yue, and F.K.-W. Li, Mechanical and Thermal Properties of Cu-Infiltrated P/M Tungsten Nozzles, J. Spacecr. Rockets, 1977, 14(4), p 207–211CrossRefGoogle Scholar
  25. 25.
    M. Ahangarkani, K. Zangeneh-Madar, S. Borji, and Z. Valefi, Microstructural Study on Ultra-High Temperature Erosion Mechanism of Infiltrated W-10wt% Cu Composite, Int. J. Refract. Met. Hard Mater., 2017, 67(6), p 115–124CrossRefGoogle Scholar
  26. 26.
    D.W. Lipke, Y. Zhang, Y. Liu, B.C. Church, and K.H. Sandhage, Near Net-Shape/Net-Dimension ZrC/W-Based Composites with Complex Geometries via Rapid Prototyping and Displacive Compensation of Porosity, J. Eur. Ceram. Soc., 2010, 30(11), p 2265–2277CrossRefGoogle Scholar
  27. 27.
    M. Adabi and A. Amadeh, Effect of Infiltration Parameters on Composition of W-ZrC Composites Produced by Displacive Compensation of Porosity (DCP) Method, Int. J. Refract. Met. Hard Mater., 2011, 29(1), p 31–37CrossRefGoogle Scholar
  28. 28.
    Y.-W. Zhao, Y.-J. Wang, H.-X. Peng, and Y. Zhou, Dense Sub-Micron-Sized ZrC-W Composite Produced by Reactive Melt Infiltration at 1200 °C, Int. J. Refract. Met. Hard Mater., 2012, 30(1), p 196–199CrossRefGoogle Scholar
  29. 29.
    S. Zhang, S. Wang, W. Li, Y. Zhu, and Z. Chen, Microstructure and Properties of W-ZrC Composites Prepared by the Displacive Compensation of Porosity (DCP) Method, J. Alloys Compd., 2011, 509(33), p 8327–8332CrossRefGoogle Scholar
  30. 30.
    M.B. Dickerson, R.R. Unocic, K.T. Guerra, M.J. Timberlake, and K.H. Sandhage, Fabrication of Dense Carbide/Refractory Metal Composites of Near Net Shape at Modest Temperatures by the Prima-DCP Process, Ceram. Trans., 2000, 115, p 25–31Google Scholar
  31. 31.
    Y.-W. Zhao, Y.-J. Wang, X.-Y. Jin, P. Jia, L. Chen, Y. Zhou, G.-M. Song, J.-P. Li, and Z.-H. Feng, Microstructure and Properties of ZrC-W Composite Fabricated by Reactive Infiltration of Zr2Cu into WC/W Preform, Mater. Chem. Phys., 2015, 153, p 17–22CrossRefGoogle Scholar
  32. 32.
    D. Wang, L. Chen, Y.-J. Wang, S.-J. Huo, J.-H. Ouyang, and Y. Zhou, W-ZrC Composites Prepared by Reactive Melt Infiltration of Zr2Cu Alloy into Partially Carburized W Preforms, Int. J. Refract. Met. Hard Mater., 2017, 67, p 125–128CrossRefGoogle Scholar
  33. 33.
    H.O. Pierson, Handbook of Refractory Carbides and Nitrides, Elsevier, Amsterdam, 1996, p 106Google Scholar
  34. 34.
    H. Taimatsu, S. Sugiyama, and Y. Kodaira, Synthesis of W2C by Reactive Hot Pressing and Its Mechanical Properties, Mater. Trans., 2008, 49(6), p 1256–1261CrossRefGoogle Scholar
  35. 35.
    S.W. Yih and C.T. Wang, Tungsten: Sources, Metallurgy, Properties, and Applications, Plenum Publishing Corporation, New York, 1979, p 11CrossRefGoogle Scholar
  36. 36.
    D.W. Lipke, Y. Zhang, Y. Cai, and K.H. Sandhage, Intragranular Tungsten/Zirconium Carbide Nanocomposites via a Selective Liquid/Solid Displacement Reaction, J. Am. Ceram. Soc., 2012, 95(9), p 2769–2772CrossRefGoogle Scholar
  37. 37.
    Y.-W. Zhao, Y.-J. Wang, Y. Zhou, H.-X. Peng, and G.-M. Song, Ternary Phase ZrxCuyCz in Reactively Infiltrated ZrC/W Composite, J. Am. Ceram. Soc., 2011, 94(10), p 3178–3180CrossRefGoogle Scholar
  38. 38.
    A. Jarfors, Solubility of Copper in Titanium Carbide, Mater. Sci. Technol., 1996, 12(12), p 990–994CrossRefGoogle Scholar
  39. 39.
    R. Kerans, K. Mazdiyasni, R. Ruh, and H. Lipsitt, Solubility of Metals in Substoichiometric TiC1−x, J. Am. Ceram. Soc., 1984, 67(1), p 34–38CrossRefGoogle Scholar
  40. 40.
    M. Greger, L. Čížek, and M. Widomská, Structure and Mechanical Properties of Formed Tungsten Based Materials, J. Mater. Process. Technol., 2004, 157, p 683–687CrossRefGoogle Scholar
  41. 41.
    W.D. Klopp, and W.R. Witzke, Mechanical Properties and Recrystallization Behavior of Electron-Beam-Melted Tungsten Compared with Arc-Melted Tungsten, NASA TN D-3232, Lewis Research Center, Cleveland, Ohio, 1966, p 1–34Google Scholar
  42. 42.
    P.R.F. Bunshah, Mechanical Properties of Refractory Compound Films, AIP Conf. Proc., 1986, 149(1), p 130–156CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Dong Wang
    • 1
  • Yu-Jin Wang
    • 1
  • Si-Jia Huo
    • 1
  • Yan-Wei Zhao
    • 2
  • Jia-Hu Ouyang
    • 1
  • Gui-Ming Song
    • 1
  • Yu Zhou
    • 1
  1. 1.Institute for Advanced Ceramics, School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.Science and Technology on Advanced Functional Composites LaboratoryAerospace Research Institute of Materials and Processing TechnologyBeijingChina

Personalised recommendations