Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1664–1672 | Cite as

Microstructural and Mechanical Properties of Hot Roll Bonded Titanium Alloy/Low Carbon Steel Plate

  • Chao Yu
  • Zi-chen Qi
  • Hui Yu
  • Cheng Xu
  • Hong Xiao


In this paper, a titanium alloy and low carbon steel were bonded via hot rolling in a vacuum, and the effect of roll bonding temperature and reduction ratio on the microstructural and mechanical properties of the plate was studied. When the bonding temperature was between 850 and 1050 °C, the shear strength of the interface increased with an increasing reduction ratio from 18 to 70%. At a bonding temperature of 950 °C and at a rolling reduction ratio of 70%, the best bonding strength was obtained, and a shear fracture occurred on the low carbon steel matrix. At 1050 °C, brittle compounds, i.e., TiC, FeTi, and Fe2Ti, formed at the interface, which decreased the bonding strength. The large reduction ratio can break up compounds at the interface and extrude fresh metal for bonding, thereby increasing the bonding strength.


hot roll bonding properties reduction ratio steel temperature titanium 



The authors would like to thank the support from the Natural Science Foundation of HeBei Province (E2015203311) and the National Natural Science Foundation of China (No. 51474190).


  1. 1.
    S.A.A.A. Mousavi and P.F. Sartangi, Experimental Investigation of Explosive Welding of cp-Titanium/AISI, 304 Stainless Steel, Mater. Des., 2009, 30(3), p 459–468CrossRefGoogle Scholar
  2. 2.
    J.S. Ha and S.I. Hong, Deformation and Fracture of Ti/439 Stainless Steel Clad Composite at Intermediate Temperatures, Mater. Sci. Eng. A, 2016, 651, p 805–809CrossRefGoogle Scholar
  3. 3.
    T.N. Prasanthi, R.C. Sudha, and S. Saroja, Explosive Cladding and Post-Weld Heat Treatment of Mild Steel and Titanium, Mater. Des., 2016, 93, p 180–193CrossRefGoogle Scholar
  4. 4.
    J. Song, A. Kostka, M. Veehmayer, and D. Raabe, Hierarchical Microstructure of Explosive Joints: Example of Titanium to Steel Cladding, Mater. Sci. Eng. A, 2011, 528(6), p 2641–2647CrossRefGoogle Scholar
  5. 5.
    H. Su, X.B. Luo, F. Chai, J.C. Shen, X.J. Sun, and F. Lu, Manufacturing Technology and Application Trends of Titanium Clad Steel Plates, J. Iron Steel Res. Int., 2015, 22(11), p 977–982CrossRefGoogle Scholar
  6. 6.
    N. Kahraman, B. Gülenç, and F. Findik, Joining of Titanium/Stainless Steel by Explosive Welding and Effect on Interface, J Mater. Process. Technol., 2005, 169(2), p 127–133CrossRefGoogle Scholar
  7. 7.
    P. Manikandan, K. Hokamoto, M. Fujita, K. Raghukandan, and R. Tomoshige, Control of Energetic Conditions by Employing Interlayer of Different Thickness for Explosive Welding of Titanium/304 Stainless Steel, J Mater. Process. Technol., 2008, 195(1–3), p 232–240CrossRefGoogle Scholar
  8. 8.
    C. Velmurugan, V. Senthilkumar, S. Sarala, and J. Arivarasan, Low Temperature Diffusion Bonding of Ti-6Al-4V and Duplex Stainless Steel, J Mater. Process. Technol., 2016, 234, p 272–279CrossRefGoogle Scholar
  9. 9.
    M. Wachowski, M. Gloc, T. Ślęzak, T. Płociński, and K.J. Kurzydłowski, The Effect of Heat Treatment on the Microstructure and Properties of Explosively Welded Titanium-Steel Plates, J. Mater. Eng. Perform., 2017, 26(3), p 945–954CrossRefGoogle Scholar
  10. 10.
    M.X. Xie, L.J. Zhang, G.F. Zhang, J.X. Zhang, Z.Y. Bi, and P.C. Li, Microstructure and Mechanical Properties of CP-Ti/X65 Bimetallic Sheets Fabricated by Explosive Welding and Hot Rolling, Mater. Des., 2015, 87, p 181–197CrossRefGoogle Scholar
  11. 11.
    D.S. Zhao, J.C. Yan, Y. Wang, and S.Q. Yang, Relative Slipping of Interface of Titanium Alloy to Stainless Steel During Vacuum Hot Roll Bonding, Mater. Sci. Eng. A, 2009, 499(1–2), p 282–286CrossRefGoogle Scholar
  12. 12.
    T. Momono, T. Enjo, and K. Ikeuchi, Effect of Carbon Content on the Diffusion Bonding of Iron and Steel to Titanium, ISIJ Int., 1990, 30(11), p 978–984CrossRefGoogle Scholar
  13. 13.
    C. Yu, H. Xiao, H. Yu, Z.C. Qi, and C. Xu, Mechanical Properties and Interfacial Structure of Hot-Roll Bonding TA2/Q235B Plate Using DT4 Interlayer, Mater. Sci. Eng. A, 2017, 695, p 120–125CrossRefGoogle Scholar
  14. 14.
    H.T. Jiang, X.Q. Yan, J.X. Liu, and X.G. Duan, Effect of Heat Treatment on Microstructure and Mechanical Property of Ti—Steel Explosive-Rolling Clad Plate, Trans Nonferr. Met. Soc., 2014, 24(3), p 697–704CrossRefGoogle Scholar
  15. 15.
    I.K. Kim and S.I. Hong, Effect of Heat Treatment on the Bending Behavior of Tri-Layered Cu/Al/Cu Composite Plates, Mater. Des., 2013, 47(9), p 590–598CrossRefGoogle Scholar
  16. 16.
    I.K. Kim and S.I. Hong, Effect of Component Layer Thickness on the Bending Behaviors of Roll-Bonded Tri-Layered Mg/Al/STS Clad Composites, Mater. Des., 2013, 49, p 935–944CrossRefGoogle Scholar
  17. 17.
    M. Saboktakin, G.R. Razavi, and H. Monajati, The Investigate Metallurgical Properties of Roll Bonding Titanium Clad Steel, Int. J Appl. Phys. Math., 2011, 1, p 177–180CrossRefGoogle Scholar
  18. 18.
    J.C. Yan, D.S. Zhao, C.W. Wang, and S.Q. Yang, Vacuum Hot Roll Bonding of Titanium Alloy and Stainless Steel Using Nickel Interlayer, Mater. Sci. Technol. Lond, 2013, 25(7), p 914–918CrossRefGoogle Scholar
  19. 19.
    Z.A. Luo, G.L. Wang, G.M. Xie, L.P. Wang, and K. Zhao, Interfacial Microstructure and Properties of a Vacuum Hot Roll-Bonded Titanium-Stainless Steel Clad Plate with a Niobium Interlayer, Acta Metal. Sin., 2013, 26(6), p 754–760CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Chao Yu
    • 1
    • 2
  • Zi-chen Qi
    • 1
    • 2
  • Hui Yu
    • 1
    • 2
  • Cheng Xu
    • 1
    • 2
  • Hong Xiao
    • 1
    • 2
  1. 1.National Engineering Research Center for Equipment and Technology of Cold Strip RollingYanshan UniversityQinhuangdaoPeople’s Republic of China
  2. 2.College of Mechanical EngineeringYanshan UniversityQinhuangdaoPeople’s Republic of China

Personalised recommendations