Skip to main content
Log in

Effect of Different Thermomechanical Processes on the Microstructure, Texture, and Mechanical Properties of API 5L X70 Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A commercial API 5L X70 steel plate was subjected to different thermomechanical processes to propose a novel thermomechanical rolling path to achieve improved mechanical properties. Scanning electron microscopy, electron backscatter diffraction, and x-ray texture analysis were employed for microstructural characterization. The results showed that strain-free recrystallized {001} ferrite grains that developed at higher rolling temperature could not meet the American Petroleum Institute (API) requirements. Also, refined and work-hardened grains that have formed in the intercritical region with high stored energy do not provide suitable tensile properties. However, fine martensite–austenite constituents dispersed in ferrite matrix with grains having predominantly {111} and {110} orientations parallel to the normal direction that developed under isothermal rolling at 850 °C provided an outstanding combination of tensile strength and ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K. Banerjee, Hydrogen-Induced Cold Cracking in High-Frequency Induction Welded Steel Tubes, Metall. Mater. Trans. A, 2016, 47(4), p 1677–1685

    Article  Google Scholar 

  2. X. Liang and A.J. Deardo, A Study of the Influence of Thermomechanical Controlled Processing on the Microstructure of Bainite in High Strength Plate Steel, Metall. Mater. Trans. A, 2014, 45(11), p 5173–5184

    Article  Google Scholar 

  3. S.Y. Shin, B. Hwang, S. Lee, N.J. Kim, and S.S. Ahn, Correlation of Microstructure and Charpy Impact Properties in API, X70 and X80 Line-Pipe Steels, Mater. Sci. Eng. A, 2007, 458(1–2), p 281–289

    Article  Google Scholar 

  4. S. Nafisi, M.A. Arafin, L. Collins, and J. Szpunar, Texture and Mechanical Properties of API, X100 Steel Manufactured Under Various Thermomechanical Cycles, Mater. Sci. Eng. A, 2012, 531, p 2–11

    Article  Google Scholar 

  5. H.K. Sung et al., Correlation Between Microstructures and Tensile Properties of Strain-Based API, X60 Pipeline Steels, Metall. Mater. Trans. A, 2016, 47(6), p 2726–2738

    Article  Google Scholar 

  6. H.K. Sung et al., Effects of Finish Cooling Temperature on Tensile Properties After Thermal Aging of Strain-Based API, X60 Linepipe Steels, Metall. Mater. Trans. A, 2015, 46(9), p 3989–3998

    Article  Google Scholar 

  7. K. Huang and R.E. Logé, A Review of Dynamic Recrystallization Phenomena in Metallic Materials, Mater. Des., 2016, 111, p 548–574

    Article  Google Scholar 

  8. M. Masoumi, C.C. Silva, H. Ferreira, and G. De Abreu, Effect of Rolling in the Recrystallization Temperature Region Associated with a Post-Heat Treatment on the Microstructure, Crystal Orientation, and Mechanical Properties of API, 5L X70 Pipeline Steel, Mater. Res., 2017, 20(1), p 151–160

    Article  Google Scholar 

  9. A. Gourgues, H.M. Flower, and T.C. Lindley, Electron Backscattering Diffraction Study of Acicular Ferrite, Bainite, and Martensite Steel Microstructures, Mater. Sci. Technol., 2000, 16, p 26–40

    Article  Google Scholar 

  10. V.R.D.J. Dingley and K.Z. Baba-Kishi, Atlas of Backscattering Kikuchi Diffraction Patterns, Microscopy in Materials Science Series Institute of Physics Publishing, Philadelphia, 1995, p 299–306

    Google Scholar 

  11. G. Sainath and B.K. Choudhary, Orientation Dependent Deformation Behaviour of BCC Iron Nanowires, Comput. Mater. Sci., 2016, 111, p 406–415

    Article  Google Scholar 

  12. C. Herrera, N.B. Lima, A.F. Filho, R.L. Plaut, and A.F. Padilha, Texture and Mechanical Properties Evolution of a Deep Drawing Medium Carbon Steel During Cold Rolling and Subsequent Recrystallization, J. Mater. Process. Technol., 2009, 209, p 3518–3524

    Article  Google Scholar 

  13. A. Ghosh, S. Kundu, and D. Chakrabarti, Effect of Crystallographic Texture on the Cleavage Fracture Mechanism and Effective Grain Size of Ferritic Steel, Scr. Mater., 2014, 81, p 8–11

    Article  Google Scholar 

  14. V. Venegas, F. Caleyo, J.M. Hallen, T. Baudin, and R. Penelle, Role of Crystallographic Texture in Hydrogen-Induced Cracking of Low Carbon Steels for Sour Service Piping, Metall. Mater. Trans. A, 2007, 38, p 1022–1031

    Article  Google Scholar 

  15. V. Venegas, F. Caleyo, T. Baudin, J.H. Espina-Hernández, and J.M. Hallen, On the Role of Crystallographic Texture in Mitigating Hydrogen-Induced Cracking in Pipeline Steels, Corros. Sci., 2011, 53, p 4204–4212

    Article  Google Scholar 

  16. M.A. Arafin and J.A. Szpunar, A New Understanding of Intergranular Stress Corrosion Cracking Resistance of Pipeline Steel Through Grain Boundary Character and Crystallographic Texture Studies, Corros. Sci., 2009, 51, p 119–128

    Article  Google Scholar 

  17. M.A. Mohtadi-Bonab, R. Karimdadashi, M. Eskandari, and J.A. Szpunar, Hydrogen-Induced Cracking Assessment in Pipeline Steels Through Permeation and Crystallographic Texture Measurements, J. Mater. Eng. Perform., 2016, 25, p 1781–1793

    Article  Google Scholar 

  18. B. Mirzakhani, M.T. Salehi, S. Khoddam, S.H. Seyedein, and M.R. Aboutalebi, Investigation of Dynamic and Static Recrystallization Behavior During Thermomechanical Processing in a API-X70 Microalloyed Steel, J. Mater. Eng. Perform., 2009, 18, p 1029–1034

    Article  Google Scholar 

  19. S.Y. Shin, K.J. Woo, B. Hwang, S. Kim, and S. Lee, Fracture-Toughness Analysis in Transition-Temperature Region of Three American Petroleum Institute X70 and X80 Pipeline Steels, Metall. Mater. Trans. A, 2009, 40, p 867–876

    Article  Google Scholar 

  20. E. El-Danaf, M. Baig, A. Almajid, W. Alshalfan, M. Al-Mojil, and S. Al-Shahrani, Mechanical, Microstructure and Texture Characterization of API, X65 Steel, Mater. Des., 2013, 47, p 529–538

    Article  Google Scholar 

  21. A. 562-02, Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count (ASTM, 2002)

  22. F. Bachmann, R. Hielscher, and H. Schaeben, Ultramicroscopy Grain Detection from 2d and 3d EBSD Data—Specification of the MTEX Algorithm, Ultramicroscopy, 2011, 111, p 1720–1733

    Article  Google Scholar 

  23. D.A. Hughes, High Angle Boundaries Formed by Grain Subdivision Mechanisms, Acta Mater., 1997, 45, p 3871–3886

    Article  Google Scholar 

  24. J.H. Yang, Q.Y. Liu, D.B. Sun, and X.Y. Li, Microstructure and Transformation Characteristics of Acicular Ferrite in High Niobium-Bearing Microalloyed Steel, J. Iron Steel Res. Int., 2010, 17(6), p 53–59

    Article  Google Scholar 

  25. R.D.A. Silva, L.F.G. Souza, E.V. Morales, P.R. Rios, and I.D.S. Bott, Formation of Microphases and Constituents from Remaining Austenite Decomposition in API, X80 Steel Under Different Processing Conditions, Mater. Res., 2015, 18(5), p 908–917

    Article  Google Scholar 

  26. E. Tsl and E. South, Phase Differentiation via Combined EBSD and XEDS, J. Microsc., 2004, 213, p 296–305

    Article  Google Scholar 

  27. S.J.S. Qazi, A.R. Rennie, J.K. Cockcroft, and M. Vickers, Use of Wide-Angle X-ray Diffraction to Measure Shape and Size of Dispersed Colloidal Particles, J. Colloid Interface Sci., 2009, 338, p 105–110

    Article  Google Scholar 

  28. P. Cizek, B.P. Wynne, C.H.J. Davies, B.C. Muddle, and P.D. Hodgson, Effect of Composition and Austenite Deformation on the Transformation Characteristics of Low-Carbon and Ultralow-Carbon Microalloyed Steels, Metall. Mater. Trans. A, 2002, 33, p 1331–1349

    Article  Google Scholar 

  29. J.B. Seol, D. Raabe, P.P. Choi, Y.R. Im, and C.G. Park, Atomic Scale Effects of Alloying, Partitioning, Solute Drag and Austempering on the Mechanical Properties of High-Carbon Bainitic-Austenitic TRIP Steels, Acta Mater., 2012, 60(17), p 6183–6199

    Article  Google Scholar 

  30. G. Thomas, J. Speer, D. Matlock, and J. Michael, Application of Electron Backscatter Diffraction Techniques to Quenched and Partitioned Steels, Microsc. Microanal., 2011, 17(3), p 368–373

    Article  Google Scholar 

  31. F.J. Humphreys, and M. Hatherly, The deformed state, in Recrystallization and Related Annealing Phenomena, 2 edn. (Elsevier, Oxford, 2004), pp. 11–65.

  32. R. Blonde et al., High-Resolution X-ray Diffraction Investigation on the Evolution of the Substructure of Individual Austenite Grains in TRIP Steels During Tensile Deformation, Mater. Sci. Eng. A, 2014, 47(3), p 965–973

    Google Scholar 

  33. P.J. Konijnenberg, S. Zaefferer, and D. Raabe, Acta Materialia Assessment of Geometrically Necessary Dislocation Levels Derived by 3D EBSD, Acta Mater., 2015, 99, p 402–414

    Article  Google Scholar 

  34. S.I. Wright, M.M. Nowell, S.P. Lindeman, P.P. Camus, M. De Graef, and M.A. Jackson, Ultramicroscopy Introduction and Comparison of New EBSD Post-Processing Methodologies, Ultramicrosc. J., 2015, 159, p 81–94

    Article  Google Scholar 

  35. V.A. Borodin, P.V. Vladimirov, and A. Möslang, The Effects of Temperature on (001)〈110〉 crack propagation in bcc iron, J. Nucl. Mater., 2013, 442(1), p 612–617

    Article  Google Scholar 

  36. M. Eskandari, A. Zarei-Hanzaki, J.A. Szpunar, M.A. Mohtadi-Bonab, A.R. Kamali, and M. Nazarian-Samani, Microstructure Evolution and Mechanical Behavior of a New Microalloyed High Mn Austenitic Steel During Compressive Deformation, Mater. Sci. Eng. A, 2014, 615, p 424–435

    Article  Google Scholar 

  37. M. Eskandari, M.A. Mohtadi-Bonab, and J.A. Szpunar, Evolution of the Microstructure and Texture of X70 Pipeline Steel During Cold-Rolling and Annealing Treatments, Mater. Des., 2016, 90, p 618–627

    Article  Google Scholar 

  38. M.J. Serenelli, M.A. Bertinetti, and J.W. Signorelli, Investigation of the Dislocation Slip Assumption on Formability of BCC Sheet Metals, Int. J. Mech. Sci., 2010, 52, p 1723–1734

    Article  Google Scholar 

  39. L. Dezerald, D. Rodney, E. Clouet, L. Ventelon, and F. Willaime, Plastic Anisotropy and Dislocation Trajectory in BCC Metals, Nat. Commun., 2016, 7, p 11695

    Article  Google Scholar 

  40. J. Wang, A. Misra, R.G. Hoagland, and J.P. Hirth, Slip Transmission Across FCC/BCC Interfaces with Varying Interface Shear Strengths, Acta Mater., 2012, 60, p 1503–1513

    Article  Google Scholar 

  41. API 5L, Specification for Line Pipe, vol. 42 (American Petroleum Institute, 2000), p. 153

  42. W.-S. Lee and T.-T. Su, Mechanical Properties and Microstructural Features of AISI, 4340 High-Strength Alloy Steel Under Quenched and Tempered Conditions, J. Mater. Process. Technol., 1999, 87(1–3), p 198–206

    Article  Google Scholar 

  43. M.Y. Tu, C.A. Hsu, W.H. Wang, and Y.F. Hsu, Comparison of Microstructure and Mechanical Behavior of Lower Bainite and Tempered Martensite in JIS SK5 Steel, Mater. Chem. Phys., 2008, 107(2–3), p 418–425

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the CAPES and CNPq Brazilian research agencies for financial support and Central Analítica-UFC/CT-INFRA/MCTI-SISNANO/Pró-Equipamentos for providing research facilities used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Masoumi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masoumi, M., Echeverri, E.A.A., Silva, C.C. et al. Effect of Different Thermomechanical Processes on the Microstructure, Texture, and Mechanical Properties of API 5L X70 Steel. J. of Materi Eng and Perform 27, 1694–1705 (2018). https://doi.org/10.1007/s11665-018-3276-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3276-z

Keywords

Navigation