Skip to main content
Log in

An improved Armstrong–Frederick-Type Plasticity Model for Stable Cyclic Stress–Strain Responses Considering Nonproportional Hardening

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper modified an Armstrong–Frederick-type plasticity model for investigating the stable cyclic deformation behavior of metallic materials with different sensitivity to nonproportional loadings. In the modified model, the nonproportionality factor and nonproportional cyclic hardening coefficient coupled with the Jiang–Sehitoglu incremental plasticity model were used to estimate the stable stress–strain responses of the two materials (1045HR steel and 304 stainless steel) under various tension–torsion strain paths. A new equation was proposed to calculate the nonproportionality factor on the basis of the minimum normal strain range. Procedures to determine the minimum normal strain range were presented for general multiaxial loadings. Then, the modified model requires only the cyclic strain hardening exponent and cyclic strength coefficient to determine the material constants. It is convenient for predicting the stable stress–strain responses of materials in engineering application. Comparisons showed that the modified model can reflect the effect of nonproportional cyclic hardening well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D.F. Socie and G.B. Marquis, Multiaxial Fatigue, Society of Auto Engineers Inc, Warrendale, 2000

    Book  Google Scholar 

  2. D.F. Socie, Multiaxial Fatigue Damage Models, J. Eng. Mater. Technol. (Trans. ASME), 1987, 109, p 293–298

    Article  Google Scholar 

  3. N. Shamsaei, A. Fatemi, and D.F. Socie, Multiaxial Cyclic Deformation and Non-proportional Hardening Employing Discriminating Load Paths, Int. J. Plast., 2010, 26, p 1680–1701

    Article  Google Scholar 

  4. N. Shamsaei and A. Fatemi, Effect of Microstructure and Hardness on Non-proportional Cyclic Hardening Coefficient and Predictions, Mater. Sci. Eng. A, 2010, 527, p 3015–3024

    Article  Google Scholar 

  5. J.L. Chaboche, A Review of Some Plasticity and Viscoplasticity Constitutive Theories, Int. J. Plast., 2008, 24, p 1642–1693

    Article  Google Scholar 

  6. S. Bari and T. Hassan, Anatomy of Coupled Constitutive Models for Ratcheting Simulation, Int. J. Plast., 2000, 16, p 381–409

    Article  Google Scholar 

  7. P.J. Armstrong, and C.O. Frederick, A Mathematical Representation of the Multiaxial Bauschinger Effect. Report RD/B/N 731, Central Electricity Generating Board, 1966

  8. J.L. Chaboche, On some Modifications of Kinematic Hardening to Improve the Description of Ratcheting Effects, Int. J. Plast., 1991, 7, p 661–678

    Article  Google Scholar 

  9. J.L. Chaboche, Modeling of Ratchetting: Evaluation of Various Approaches, Eur. J. Mech. A Solids, 1994, 13, p 501–518

    Google Scholar 

  10. N. Ohno and J.D. Wang, Kinematic Hardening Rules with Critical State of Dynamic Recovery, Part I: Formulation and Basic Features for Ratchetting Behavior, Int. J. Plast., 1993, 9, p 375–390

    Article  Google Scholar 

  11. N. Ohno and J.D. Wang, Kinematic Hardening Rules with Critical State of Dynamic Recovery, Part II: Application to Experiments of Ratchetting Behavior, Int. J. Plast., 1993, 9, p 391–403

    Article  Google Scholar 

  12. Y. Jiang and H. Sehitoglu, Modeling of Cyclic Ratchetting Plasticity, Part I: Development of Constitutive Relations, J. Appl. Mech. (Trans. ASME), 1996, 63, p 720–725

    Article  Google Scholar 

  13. Y. Jiang and H. Sehitoglu, Modeling of Cyclic Ratchetting Plasticity, Part II: Comparison of Model Simulations with Experiments, J. Appl. Mech. (Trans. ASME), 1996, 63, p 726–733

    Article  Google Scholar 

  14. Z. Mróz, On the Description of Anisotropic Work Hardening, J. Mech. Phys. Solids, 1967, 15, p 163–175

    Article  Google Scholar 

  15. Y.S. Garud, A New Approach to the Evaluation of Fatigue Under Multiaxial Loadings, J. Eng. Mater. Technol. (Trans. ASME), 1981, 103, p 118–125

    Article  Google Scholar 

  16. D.L. McDowell, A Two Surface Model for Transient Nonproportional Cyclic Plasticity, Part I: Development of Appropriate Equations, J. Appl. Mech. (Trans. ASME), 1985, 52, p 298–302

    Article  Google Scholar 

  17. D.L. McDowell, A Two Surface Model for Transient Nonproportional Cyclic Plasticity, Part II: Comparison of Theory with Experiments, J. Appl. Mech. (Trans. ASME), 1985, 52, p 303–308

    Article  Google Scholar 

  18. D.L. McDowell, An Evaluation of Recent Developments in Hardening and Flow Rules for Rate-Independent Non-proportional Cyclic Plasticity, J. Appl. Mech. (Trans. ASME), 1987, 54, p 323–334

    Article  Google Scholar 

  19. Y. Jiang and P. Kurath, Characteristics of the Armstrong–Frederick Type Plasticity Models, Int. J. Plasticity, 1996, 12, p 387–415

    Article  Google Scholar 

  20. J.L. Chaboche, K. Dang Van, G. Cordier, Modelization of the Strain Memory Effect on the Cyclic Hardening of 316 Stainless Steel. In: Structural Mechanics in Reaktor Technology, in Transaction of 5th International Conference on Structural Mechanics in Reactor Technology, vol L11/3 (Berlin, 1979).

  21. R. Döring, J. Hoffmeyer, T. Seeger, M. Vormwald, A short crack growth model for the prediction of fatigue lives under multiaxial nonproportional loading, in 6th International Conference on Biaxial/Multiaxial Fatigue and Fracture, Lissabon (2001), pp. 571–578

  22. J. Hoffmeyer, R. Döring, T. Seeger, and M. Vormwald, Deformation Behaviour, Short Crack Growth and Fatigue Lives Under Multiaxial Nonproportional Loading, Int. J. Fatigue, 2006, 28, p 508–520

    Article  Google Scholar 

  23. R. Döring, J. Hoffmeyer, M. Vormwald, and T. Seeger, A Plasticity Model for Calculating Stress–Strain Sequences Under Multiaxial Nonproportional Cyclic Loading, Comput. Mater. Sci., 2003, 28, p 587–596

    Article  Google Scholar 

  24. Y. Jiang and P. Kurath, Nonproportional Cyclic Deformation: Critical Experiments and Analytical Modeling, Int. J. Plast., 1997, 13, p 743–763

    Article  Google Scholar 

  25. E. Tanaka, A Nonproportionality Parameter and a Cyclic Viscoplastic Constitutive Model Taking into Account Amplitude Dependence and Memory Effects of Isotropic Hardening, Eur. J. Mech. A Solids, 1994, 13, p 155–173

    Google Scholar 

  26. Y. Jiang and P. Kurath, A Theoretical Evaluation of Plasticity Hardening Algorithms for Nonproportional Loadings, Acta Mech., 1996, 118, p 213–234

    Article  Google Scholar 

  27. S.H. Doong, D.F. Socie, and I.M. Robertson, Dislocation Substructures and Nonproportional Hardening, J. Eng. Mater. Technol., 1990, 112, p 456–464

    Article  Google Scholar 

  28. E. Tanaka, S. Murakami, and M. Ooka, Effects of Strain Path Shapes on Nonproportional Cyclic Plasticity, J. Mech. Phys. Solids, 1985, 33, p 559–575

    Article  Google Scholar 

  29. G.Z. Voyiadjis and W. Huang, A Modeling of Crystal Plasticity with Backstress Evolution, Eur. J. Mech. A Solids, 1996, 15, p 553–573

    Google Scholar 

  30. S. Krishna, T. Hassan, I.B. Naceur, K. Sai, and G. Cailletaud, Macro versus microscale constitutive models in simulating proportional and nonproportional cyclic and ratcheting responses of stainless steel 304, Int. J. Plast., 2009, 25, p 1910–1949

    Article  Google Scholar 

  31. M.A. Meggiolaro and J.T.P. Castro, Prediction of Non-proportionality Factors of Multiaxial Histories Using the Moment of Inertia Method, Int. J. Fatigue, 2014, 61, p 151–159

    Article  Google Scholar 

  32. J. Li, C.W. Li, Y.J. Qiao et al., Fatigue Life Prediction for Some Metallic Materials Under Constant Amplitude Multiaxial Loading, Int. J. Fatigue, 2014, 68, p 10–23

    Article  Google Scholar 

  33. K. Kanazawa, K.J. Miller, and M.W. Brown, Low Cycle Fatigue Under out of Phase Loading Conditions, ASME J. Eng. Mater. Techol., 1977, 99, p 222–228

    Article  Google Scholar 

  34. A. Benallal and D. Marquis, Constitutive Equations for Non-proportional Cyclic Elasto-Viscoplasticity, ASME J. Eng. Mater. Tech., 1987, 109, p 326–336

    Article  Google Scholar 

  35. X. Chen, Q. Gao, and X.F. Sun, Low Cycle Fatigue Under Nonproportional Loading, Fatigue Fract. Eng. Mater. Struct., 1996, 19, p 839–854

    Article  Google Scholar 

  36. J. Mei and P. Dong, A new path-dependent fatigue damage model for nonproportional multiaxial loading, Int. J. Fatigue, 2016, 90, p 210–221

    Article  Google Scholar 

  37. T. Itoh, M. Sakane, M. Ohnami, and D.F. Socie, Nonproportional Low Cycle Fatigue Criterion for Type 304 Stainless Steel, J. Eng. Mater. Technol. (Trans. ASME), 1995, 117, p 285–292

    Article  Google Scholar 

  38. T. Itoh, X. Chen, T. Nakagawa, and M. Sakane, A Simple Model for Stable Cyclic Stress-Strain Relationship of Type 304 Stainless Steel Under Nonproportional Loading, J. Eng. Mater. Technol. (Trans. ASME), 2000, 122, p 1–9

    Article  Google Scholar 

  39. A. Fatemi, Fatigue and Deformation Under Proportional and Nonproportional Biaxial Loading. Ph.D. dissertation, University of Iowa, 1985.

  40. Y.Y. Jiang, W. Ott, C. Baum, M. Vormwald, and H. Nowack, Fatigue Life Predictions by Integrating EVICD Fatigue Damage Model and an Advanced Cyclic Plasticity Theory, Int. J. Plast., 2009, 25, p 780–801

    Article  Google Scholar 

  41. M.V. Borodii and S.M. Shukaev, Additional Cyclic Strain Hardening and its Relation to Material Structure, Mechanical Characteristics, and Lifetime, Int. J. Fatigue, 2007, 29, p 1184–1191

    Article  Google Scholar 

  42. D.F. Mo, G.Q. He, Z.Y. Zhu et al., Fatigue Fractures and Mechanism of Al-7Si-0.3Mg Cast Alloy Under Nonproportional Loadings, Acta Metall. Sin., 2009, 45, p 861–865 ((in Chinese))

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (No. 51601221 and No. 51575524) and the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2015JM5240).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, Zp. & Li, Cw. An improved Armstrong–Frederick-Type Plasticity Model for Stable Cyclic Stress–Strain Responses Considering Nonproportional Hardening. J. of Materi Eng and Perform 27, 2038–2048 (2018). https://doi.org/10.1007/s11665-018-3271-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3271-4

Keywords

Navigation