Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1763–1776 | Cite as

Characterization of the Hot Deformation Behavior of a Newly Developed Nickel-Based Superalloy

  • Zhaoxia Shi
  • Xiaofeng Yan
  • Chunhua Duan
  • Cunjiang Tang
  • Enxiang Pu


To clarify the microstructural evolution and hot workability of GH4282 during hot forming processes, the hot deformation behavior of this superalloy was investigated by isothermal compression tests in the temperature interval of 950-1210 °C and the strain rate range of 0.01-10 s−1 with a true strain of 0.7. The results show that the flow stresses decrease with an increase in the deformation temperature and a decrease in the strain rate. The characteristic of dynamic recrystallization is revealed by the flow curves. The variation rule of the flow stress can be well described by the hyperbolic sine type equation, and the thermal deformation activation energy is determined to be 498.118 kJ/mol. The optimum hot working parameters are 1100-1180 °C and 0.01-0.1 s−1, under which the fine and uniform microstructure can be obtained.


constitutive equation dynamic recrystallization flow behavior processing map superalloy GH4282 



This work was financially supported by the National Natural Science Foundation of China (Grant No. 51601041).


  1. 1.
    J.W. Brooks, Forging of Superalloys, Mater. Des., 2000, 21(4), p 297–303CrossRefGoogle Scholar
  2. 2.
    J. Li, H.M. Wang, and H.B. Tang, Effect of Heat Treatment on Microstructure and Mechanical Properties of Laser Melting Deposited Ni-base Superalloy Rene′41, Mater. Sci. Eng. A, 2012, 550, p 97–102CrossRefGoogle Scholar
  3. 3.
    C. Yan, Z. Liu, A. Godfrey, W. Liu, and Y. Weng, Microstructure Evolution and Mechanical Properties of Inconel 740H during Aging at 750 C, Mater. Sci. Eng. A, 2014, 589, p 153–164CrossRefGoogle Scholar
  4. 4.
    L. M. Pike, Development of Fabricable Gamma-prime (γ′) Strengthened Superalloy, C. R. Roger, A. G. Kenneth, C. Pierre, P. G. Timothy, G. F. Michael, S. H. Eric, A. W. Shiel, editors, Superalloy 2008, TMS, 2008, pp 191–200.Google Scholar
  5. 5.
    L.O. Osoba, R.G. Ding, and O.A. Ojo, Microstructural Analysis of Laser Weld Fusion Zone in Haynes 282 Superalloy, Mater. Charact., 2012, 65, p 93–99CrossRefGoogle Scholar
  6. 6.
    C. Joseph, Microstructural Characterization of Haynes 282 after Heat Treatment and Forging, Licentiate Thesis, No. 101/2015, 2015.Google Scholar
  7. 7.
    L.O. Osoba and O.A. Ojo, Influence of Laser Welding Heat Input on HAZ Cracking in Newly Developed Haynes 282 Superalloy, Mater. Sci. Technol., 2012, 28(4), p 431–436CrossRefGoogle Scholar
  8. 8.
    J. He, R. Sandström, and S. Notargiacomo, Low-Cycle Fatigue Properties of a Nickel-Based Superalloy Haynes 282 for Heavy Components, J. Mater. Eng. Perform., 2017, 26(5), p 2257–2263CrossRefGoogle Scholar
  9. 9.
    F.A. Pérez-González, N.F. Garza-Montes-de-Oca, and R. Colás, High Temperature Oxidation of the Haynes 282 © Nickel-Based Superalloy, Oxid. Met., 2014, 82(3–4), p 145–161CrossRefGoogle Scholar
  10. 10.
    A. Momeni, S.M. Abbasi, M. Morakabati, H. Badri, and X. Wang, Dynamic Recrystallization Behavior and Constitutive Analysis of Incoloy 901 under Hot Working Condition, Mater. Sci. Eng. A, 2014, 615, p 51–60CrossRefGoogle Scholar
  11. 11.
    J. Wang, J. Dong, M. Zhang, and X. Xie, Hot Working Characteristics of Nickel-base Superalloy 740H during Compression, Mater. Sci. Eng. A, 2013, 566(2), p 61–70CrossRefGoogle Scholar
  12. 12.
    Z.X. Shi, X.F. Yan, C.H. Duan, and M.H. Zhao, Effect of Strain Rate on Hot Deformation Characteristics of GH690 Superalloy, Trans. Nonferrous Met. Soc. China, 2017, 27(3), p 538–550CrossRefGoogle Scholar
  13. 13.
    H. Jiang, J. Dong, M. Zhang, L. Zheng, and Z. Yao, Hot Deformation Characteristics of Alloy 617B Nickel-based Superalloy: A study Using Processing Map, J. Alloys Compd., 2015, 647(11), p 338–350CrossRefGoogle Scholar
  14. 14.
    D. Bombac, M. Brojan, M. Tercelj, and R. Turk, Response to Hot Deformation Conditions and Microstructure Development of Nimonic 80A Superalloy, Mater. Manuf. Processes, 2009, 24(6), p 644–648CrossRefGoogle Scholar
  15. 15.
    Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, 1984, 15(10), p 1883–1892CrossRefGoogle Scholar
  16. 16.
    O. Sivakesavam and Y.V.R.K. Prasad, Hot Deformation Behaviour of As-cast Mg–2Zn–1Mn Alloy in Compression: A study with Processing Map, Mater. Sci. Eng. A, 2003, 362(1–2), p 118–124CrossRefGoogle Scholar
  17. 17.
    E. Pu, W. Zheng, Z. Song, H. Feng, and Y. Zhu, Characterization of Hot Deformation Behavior of a Fe-Cr-Ni-Mo-N Superaustenitic Stainless Steel Using Dynamic Materials Modeling, J. Mater. Eng. Perform., 2017, 26(3), p 1424–1432CrossRefGoogle Scholar
  18. 18.
    L. Cheng, X. Xue, B. Tang, D. Liu, J. Li, and H. Kou, Deformation Behavior of Hot-rolled IN718 Superalloy under Plane Strain Compression at Elevated Temperature, Mater. Sci. Eng. A, 2014, 606(606), p 24–30CrossRefGoogle Scholar
  19. 19.
    Z.X. Shi, X.F. Yan, C.H. Duan, and J.G. Song, M. H, Zhao, and J. Wang, Hot Deformation Behavior of GH4945 Superalloy Using Constitutive Equation and Processing Map, J. Iron Steel Res. Int., 2017, 24(6), p 625–633CrossRefGoogle Scholar
  20. 20.
    G. Ji, Q. Li, K. Ding, L. Yang, L. Li, and A. Physically-based, Constitutive Model for High Temperature Deformation of Cu-0.36Cr-0.03Zr Alloy, J. Alloys Compd., 2015, 648, p 397–407CrossRefGoogle Scholar
  21. 21.
    Y. Liu, R. Hu, J. Li, H.C. Kou, H.W. Li, H. Chang, and H.Z. Fu, Deformation Characteristics of As-received Haynes230 Nickel Base Superalloy, Mater. Sci. Eng. A, 2008, 497(1–2), p 283–289CrossRefGoogle Scholar
  22. 22.
    A. Laasraoui and J.J. Jonas, Prediction of Steel Flow Stresses at High Temperatures and Strain Rates, Metall. Trans. A, 1991, 22(7), p 1545–1558CrossRefGoogle Scholar
  23. 23.
    R.L. Goetz and S.L. Semiatin, The Adiabatic Correction Factor for Deformation Heating during the Uniaxial Compression Test, J. Mater. Eng. Perform., 2001, 10(6), p 710–717CrossRefGoogle Scholar
  24. 24.
    H.T. Zhou, R.R. Liu, Z.C. Liu, X. Zhou, Q.Z. Peng, F.H. Zhong, and Y. Peng, Hot Deformation Characteristics of GH625 and Development of a Processing Map, J. Mater. Eng. Perform., 2013, 22(9), p 2515–2521CrossRefGoogle Scholar
  25. 25.
    Y. Ning, Z. Yao, Y. Lei, H. Guo, and M.W. Fu, Hot Deformation Behavior of the Post-cogging FGH4096 Superalloy with Fine Equiaxed Microstructure, Mater. Charact., 2011, 62(9), p 887–893CrossRefGoogle Scholar
  26. 26.
    Y. Wang, W.Z. Shao, L. Zhen, and X.M. Zhang, Microstructure Evolution during Dynamic Recrystallization of Hot Deformed Superalloy 718, Mater. Sci. Eng. A, 2008, 486(1–2), p 321–332CrossRefGoogle Scholar
  27. 27.
    D.X. Wen, Y.C. Lin, J. Chen, X.M. Chen, J.L. Zhang, Y.J. Liang, and L.T. Li, Work-hardening Behaviors of Typical Solution-treated and Aged Ni-based Superalloys during Hot Deformation, J. Alloys Compd., 2015, 618, p 372–379CrossRefGoogle Scholar
  28. 28.
    C. Zhang, L. Zhang, W. Shen, M. Li, and S. Gu, Characterization of Hot Deformation Behavior of Hastelloy C-276 Using Constitutive Equation and Processing Map, J. Mater. Eng. Perform., 2015, 24(1), p 149–157CrossRefGoogle Scholar
  29. 29.
    E. Pu, W. Zheng, J. Xiang, Z. Song, and J. Li, Hot Deformation Characteristic and Processing Map of Superaustenitic Stainless Steel S32654, Mater. Sci. Eng. A, 2014, 598(598), p 174–182CrossRefGoogle Scholar
  30. 30.
    H. Zhang, K. Zhang, Z. Lu, C. Zhao, and X. Yang, Hot Deformation Behavior and Processing Map of a γ′-hardened Nickel-based Superalloy, Mater. Sci. Eng. A, 2014, 604(604), p 1–8Google Scholar
  31. 31.
    H. Dehghan, S.M. Abbasi, A. Momeni, and A. Karimi, Taheri, On the Constitutive Modeling and Microstructural Evolution of Hot Compressed A286 Iron-base Superalloy, J. Alloys Compd., 2013, 564(26), p 13–19CrossRefGoogle Scholar
  32. 32.
    C. Bruni, A. Forcellese, and F. Gabrielli, Hot Workability and Models for Flow Stress of NIMONIC 115 Ni-base Superalloy, J. Mater. Process. Technol., 2002, 125(1), p 242–247CrossRefGoogle Scholar
  33. 33.
    J.L. Uvira and J.J. Jonas, Hot Compression of Armco Iron and Silicon Steel, Trans. Metall. Soc. AIME, 1968, 242(8), p 1619–1626Google Scholar
  34. 34.
    C. Roucoules, S. Yue, and J.J. Jonas, Effect of Alloying Elements on Metadynamic Recrystallization in HSLA steels, Metall. Trans. A, 1995, 26(1), p 181–190CrossRefGoogle Scholar
  35. 35.
    C. Zhang, L. Zhang, W. Shen, C. Liu, Y. Xia, and R. Li, Study on Constitutive Modeling and Processing Maps for Hot Deformation of Medium Carbon Cr–Ni–Mo Alloyed Steel, Mater. Des., 2016, 90, p 804–814CrossRefGoogle Scholar
  36. 36.
    S.F. Medina and C.A. Hernandez, Modelling of the Dynamic Recrystallization of Austenite in Low Alloy and Microalloyed Steels, Acta Mater., 1996, 44(44), p 165–171CrossRefGoogle Scholar
  37. 37.
    Y.V.R.K. Prasad and T. Seshacharyulu, Processing Maps for Hot Working of Titanium Alloys, Mater. Sci. Eng. A, 1998, 243(1–2), p 82–88CrossRefGoogle Scholar
  38. 38.
    Y.V.R.K. Prasad, D.H. Sastry, and S.C. Deevi, Processing Maps for Hot Working of a P/M Iron Aluminide Alloy, Intermetallics, 2000, 8(9–11), p 1067–1074CrossRefGoogle Scholar
  39. 39.
    L. Wang, F. Liu, J.J. Cheng, Q. Zuo, and C.F. Chen, Hot Deformation Characteristics and Processing Map Analysis for Nickel-based Corrosion Resistant Alloy, J. Alloys Compd., 2015, 623, p 69–78CrossRefGoogle Scholar
  40. 40.
    Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43(6), p 243–258CrossRefGoogle Scholar
  41. 41.
    A. Amiri, M.H. Sadeghi, and G.R. Ebrahimi, Characterization of Hot Deformation Behavior of AMS 5708 Nickel-Based Superalloy Using Processing Map, J. Mater. Eng. Perform., 2013, 22(12), p 3940–3945CrossRefGoogle Scholar
  42. 42.
    Y.V.R.K. Prasad and S. Sasidhara, Working Guide: A Compendium of Processing Maps, Materials Park, OH, ASM International, 1997Google Scholar
  43. 43.
    H. Peng, D. Li, Q. Guo, S. Guo, X. Xu, and J. Hu, Effect of Deformation Conditions on the Dynamic Recrystallization of GH690 Alloy, Rare Met. Mater. Eng., 2012, 41(8), p 1317–1322CrossRefGoogle Scholar
  44. 44.
    Q.L. Pan, B. Li, Y. Wang, Y.W. Zhang, and Z.M. Yin, Characterization of Hot Deformation Behavior of Ni-base Superalloy Rene’41 Using Processing Map, Mater. Sci. Eng. A, 2013, 585, p 371–378CrossRefGoogle Scholar
  45. 45.
    H. Zhang, K. Zhang, H. Zhou, Z. Lu, C. Zhao, and X. Yang, Effect of Strain Rate on Microstructure Evolution of a Nickel-based Superalloy during Hot Deformation, Mater. Des., 2015, 80, p 51–62CrossRefGoogle Scholar
  46. 46.
    Y. Kong, P. Chang, Q. Li, L. Xie, and S. Zhu, Hot Deformation Characteristics and Processing Map of Nickel-based C276 Superalloy, J. Alloys Compd., 2015, 622, p 738–744CrossRefGoogle Scholar
  47. 47.
    H.Z. Li, Z. Li, M. Song, X.P. Liang, and F.F. Guo, Hot Deformation Behavior and Microstructural Evolution of Ag-containing 2519 Aluminum alloy, Mater. Des., 2010, 31(4), p 2171–2176CrossRefGoogle Scholar
  48. 48.
    Y. Cao, H. Di, J. Zhang, J. Zhang, T. Ma, and R.D.K. Misra, An Electron Backscattered Diffraction Study on the Dynamic Recrystallization Behavior of a Nickel–chromium Alloy (800H) during Hot Deformation, Mater. Sci. Eng. A, 2013, 585(11), p 71–85CrossRefGoogle Scholar
  49. 49.
    A. Momeni, K. Dehghani, H. Keshmiri, and G.R. Ebrahimi, Hot Deformation Behavior and Microstructural Evolution of a Superaustenitic Stainless Steel, Mater. Sci. Eng. A, 2010, 527(6), p 1605–1611CrossRefGoogle Scholar
  50. 50.
    E. Pu, W. Zheng, Z. Song, J. Xiang, and X. Wei, Optimization of Hot Workability in Superaustenitic Stainless Steel 654SMO, Iron Steel Res. Int., 2014, 21(10), p 975–982CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Zhaoxia Shi
    • 1
    • 2
  • Xiaofeng Yan
    • 1
  • Chunhua Duan
    • 1
  • Cunjiang Tang
    • 3
  • Enxiang Pu
    • 4
  1. 1.High Temperature Materials Research InstituteCentral Iron and Steel Research InstituteBeijingChina
  2. 2.Beijing Key Laboratory of Advanced High Temperature MaterialsCentral Iron and Steel Research InstituteBeijingChina
  3. 3.Beijing National Innovation Institute of Lightweight LtdBeijingChina
  4. 4.Central Iron and Steel Research InstituteBeijingChina

Personalised recommendations