Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1973–1986 | Cite as

Investigation on Tribological Properties of the Pre-oxidized Ti2AlN/TiAl Composite

  • Daqun Wang
  • Dongli Sun
  • Xiuli HanEmail author
  • Qing Wang
  • Guangwei Wang


Different oxidation layers on the Ti2AlN/TiAl substrate which was fabricated by in situ synthesis were prepared through thermal oxidation process. The microstructure, phase identification and elements distribution of the oxidation layers were analyzed. The tribological performance of pre-oxidized composites against Si3N4 ball at 25 and 600 °C, as well as the effect of pre-oxidation layers on tribological performance was systematically investigated. The results show that, compared to Ti2AlN/TiAl, the pre-oxidized composites present more excellent tribological properties, especially the wear resistance at 600 °C. It is a significant finding that, different from severe abrasive wear and plastic deformation of Ti2AlN/TiAl, the tribo-films formed by the pre-oxidation layers on the worn surface of pre-oxidized composites weaken abrasive wear and suppress the development of plastic deformation to protect the underlying composite substrate from wear. Moreover, the stable cooperation on the interface between tribo-films and Si3N4 ball results in the relatively steady friction coefficient.


metallic matrix composite oxidation tribological property wear mechanism 



This work was supported by National Science Foundation of China (Grant Nos. 51471058 and 51201046).


  1. 1.
    H. Clemens and S. Mayer, Design, Processing, Microstructure, Properties, and Applications of Advanced Intermetallic TiAl alloys, Adv. Eng. Mater., 2013, 15(4), p 191–215CrossRefGoogle Scholar
  2. 2.
    Z. Du, K. Zhang, S. Jiang, R. Zhu, and S. Li, High Temperature Mechanical Behavior of Ti-45Al-8Nb and its Cavity Evolution in Deformation, J. Mater. Eng. Perform., 2015, 24(10), p 3746–3754CrossRefGoogle Scholar
  3. 3.
    S. Chang, The Isothermal and Cyclic Oxidation Behavior of a Titanium Aluminide Alloy at Elevated Temperature, J. Mater. Eng. Perform., 2007, 16(4), p 508–514CrossRefGoogle Scholar
  4. 4.
    I. Yadroitsev, P. Krakhmalev, and I. Yadroitsava, Selective Laser Melting of Ti6Al4 V Alloy for Biomedical Applications: Temperature Monitoring and Microstructural Evolution, J. Alloy. Compd., 2014, 583, p 404–409CrossRefGoogle Scholar
  5. 5.
    J. Cheng, J. Ma, Y. Yu, L. Fu, Z. Qiao, J. Yang, J. Li, and W. Liu, Vacuum Tribological Properties of a Ti-46Al-2Cr-2Nb Intermetallics, J. Tribol., 2014, 136(2), p 021604CrossRefGoogle Scholar
  6. 6.
    T. Kawabata, H. Fukai, and O. Izumi, Effect of Ternary Additions on Mechanical Properties of TiAl, Acta Mater., 1998, 46(6), p 2185–2194CrossRefGoogle Scholar
  7. 7.
    F. Appel and R. Wagner, Microstructure and Deformation of Two-Phase γ-Titanium Aluminides, Mater. Sci. Eng., 1998, 22(5), p 187–268CrossRefGoogle Scholar
  8. 8.
    J. Gussone, Y. Hagedorn, H. Gherekhloo, G. Kasperovich, T. Merzouk, and J. Hausmann, Microstructure of γ-Titanium Aluminide Processed by Selective Laser Melting at Elevated Temperatures, Intermetallics, 2015, 66, p 133–140CrossRefGoogle Scholar
  9. 9.
    R. Imayev, V. Imayev, M. Oehring, and F. Appel, Alloy Design Concepts for Refined Gamma Titanium Aluminide Based Alloys, Intermetallics, 2007, 15(4), p 451–460CrossRefGoogle Scholar
  10. 10.
    A. Rastkar, A. Bloyce, and T. Bell, Sliding Wear Behavior of Two Gamma-Based Titanium Aluminides, Wear, 2000, 240(1), p 19–26CrossRefGoogle Scholar
  11. 11.
    K. Miyoshi, B. Lerch, and S. Draper, Fretting Wear of Ti-48Al-2Cr-2Nb, Tribol. Int., 2003, 36, p 145–153CrossRefGoogle Scholar
  12. 12.
    X. Liu, X. Meng, H. Liu, G. Shi, S. Wu, C. Sun, M. Wang, and L. Qi, Development and Characterization of Laser Clad High Temperature Self-Lubricating Wear Resistant Composite Coatings on Ti-6Al-4 V Alloy, Mater. Des., 2014, 55, p 404–409CrossRefGoogle Scholar
  13. 13.
    R. Pflumm, A. Donchev, S. Mayer, H. Clemens, and M. Schütze, High-Temperature Oxidation Behavior of Multi-phase Mo-Containing γ-TiAl-Based Alloys, Intermetallics, 2014, 53, p 45–55CrossRefGoogle Scholar
  14. 14.
    X. Liu and H. Wang, Modification of Tribology and High-Temperature Behavior of Ti-48Al-2Cr-2Nb Intermetallic Alloy by Laser Cladding, Appl. Surf. Sci., 2006, 252(16), p 5735–5744CrossRefGoogle Scholar
  15. 15.
    J. Yao, X. Shi, W. Zhai, A. Ibrahim, Z. Xu, S. Song, L. Che, Q. Zhu, Y. Xiao, and Q. Zhang, Effect of TiB2 on Tribological Properties of TiAl Self-lubricating Composites Containing Ag at Elevated Temperature, J. Mater. Eng. Perform., 2015, 24(1), p 307–318CrossRefGoogle Scholar
  16. 16.
    J. Cheng, Y. Yu, L. Fu, F. Li, Z. Qiao, J. Li, J. Yang, and W. Liu, Effect of TiB2 on Dry-Sliding Tribological Properties of TiAl Intermetallics, Tribol. Int., 2013, 62, p 91–99CrossRefGoogle Scholar
  17. 17.
    G. Zhao, J. Chen, and L. Zheng, In-situ Synthesis, Microstructure and Properties of Ti2AlN/TiB2 Composite, Int. J. Mater. Res., 2016, 108(2), p 133–138CrossRefGoogle Scholar
  18. 18.
    K. Zhang, F. Wang, J. Zhu, and L. Ye, The Microstructures and Mechanical Properties of V2O5-Doped Al2O3/TiAl In Situ Composites by Reactive Hot Pressing Process, J. Mater. Eng. Perform., 2013, 22(12), p 3933–3939CrossRefGoogle Scholar
  19. 19.
    S. Djanarthany, J. Viala, and J. Bouix, Development of SiC/TiAl Composites: Processing and Interfacial Phenomena, Mater. Sci. Eng. A, 2001, 300(1), p 211–218CrossRefGoogle Scholar
  20. 20.
    J. Cheng, F. Li, L. Fu, Z. Qiao, J. Yang, and W. Liu, Dry-sliding Tribological Properties of TiAl/Ti2AlC Composites, Tribol. Lett., 2014, 53(2), p 457–467CrossRefGoogle Scholar
  21. 21.
    T. Ai, Q. Yu, and W. Li, Design and Strengthening Behavior of Ti2AlC/TiAl Composite by Low-Temperature Hot-Pressing Process, Adv. Appl. Ceram., 2016, 115(4), p 190–192CrossRefGoogle Scholar
  22. 22.
    T. Ai, N. Yu, X. Feng, N. Xie, and W. Li, Low-Temperature Synthesis and Characterization of Ti2AlC/TiAl In Situ Composites via a Reaction Hot-Pressing Process in the Ti3AlC2-Ti-Al System, Met. Mater. Int., 2015, 21(1), p 179–184CrossRefGoogle Scholar
  23. 23.
    Y. Liu, R. Hu, J. Yang, and J. Li, Tensile Properties and Fracture Behavior of In Situ Synthesized Ti2AlN/Ti48Al2Cr2Nb Composites at Room and Elevated Temperatures, Mater. Sci. Eng., A, 2017, 679, p 7–13CrossRefGoogle Scholar
  24. 24.
    D. Sun, T. Sun, Q. Wang, X. Han, and Q. Guo, Fabrication of In Situ Ti2AlN/TiAl Composites by Reaction Hot Pressing and Their Properties, J. Wuhan Univ. Technol., 2014, 29(1), p 126–130CrossRefGoogle Scholar
  25. 25.
    Y. Zhou, D. Sun, D. Jiang, X. Han, Q. Wang, and G. Wu, Microstructural Characteristics and Evolution of Ti2AlN/TiAl Composites with a Network Reinforcement Architecture During Reaction Hot Pressing Process, Mater. Charact., 2013, 80, p 28–35CrossRefGoogle Scholar
  26. 26.
    Z. Xu, X. Shi, Q. Zhang, W. Zhai, J. Yao, L. Chen, Q. Zhu, and Y. Xiao, High-Temperature Tribological Performance of Ti3SiC2/TiAl Self-lubricating Composite Against Si3N4 in Air, J. Mater. Eng. Perform., 2014, 23(6), p 2255–2264CrossRefGoogle Scholar
  27. 27.
    Z. Xu, X. Shi, M. Wang, W. Zhai, J. Yao, S. Song, and Q. Zhang, Effect of Ag and Ti3SiC2 on Tribological Properties of TiAl Matrix Self-lubricating Composites at Room and Increased Temperatures, Tribol. Lett., 2014, 53(3), p 617–629CrossRefGoogle Scholar
  28. 28.
    Z. Xu, B. Xue, X. Shi, Q. Zhang, W. Zhai, J. Yao, and Y. Wang, Sliding Speed and Load Dependence of Tribological Properties of Ti3SiC2/TiAl Composite, Tribol. T., 2015, 58(1), p 87–96CrossRefGoogle Scholar
  29. 29.
    Z. Sun, Progress in Research and Development on MAX Phases: A Family of Layered Ternary Compounds, Int. Mater. Rev., 2011, 56(3), p p143–p166CrossRefGoogle Scholar
  30. 30.
    H. Zhai, Z. Huang, Y. Zhou, Z. Zhang, and Y. Wang, Oxidation Layer in Sliding Friction Surface of High-Purity Ti3SiC2, J. Mater. Sci., 2004, 39(21), p 6635–6637CrossRefGoogle Scholar
  31. 31.
    P. An, Z. He, J. Qin, Z. Li, Y. Li, Z. Kou, and D. He, Stability of Titanium-Aluminium Nitride (Ti2AlN) at High Pressure and High Temperatures, J. Wuhan Univ. Technol., 2011, 26(5), p 914–919CrossRefGoogle Scholar
  32. 32.
    C. Martini and L. Ceschini, A Comparative Study of the Tribological Behaviour of PVD Coatings on the Ti-6Al-4 V Alloy, Tribol. Int., 2011, 44(3), p 297–308CrossRefGoogle Scholar
  33. 33.
    D. Kuo and K. Huang, Kinetic and Microstructure of TiN Coatings by CVD, Surf. Coat. Technol., 2001, 135(2), p 150–157CrossRefGoogle Scholar
  34. 34.
    Y. Xu, Q. Miao, W. Liang, X. Yu, Q. Jiang, Z. Zhang, B. Ren, and Z. Yao, Tribological Behavior of Al2O3/Al Composite Coating on γ-TiAl at Elevated Temperature, Mater. Charact., 2015, 101, p 122–129CrossRefGoogle Scholar
  35. 35.
    A. Rastkar and T. Bell, Characterization and Tribological Performance of Oxide Layers on a Gamma Based Titanium Aluminide, Wear, 2005, 258(11), p 1616–1624CrossRefGoogle Scholar
  36. 36.
    American Society for Testing and Materials, Standard Test Method for Wear Testing With a Pin-on-Disk Apparatus, ASTM G99-95, 1995Google Scholar
  37. 37.
    Z. Yan, Q. Shen, X. Shi, K. Zou, Y. Huang, and A. Zhang, Tribological Behavior of γ-TiAl Matrix Composites with Different Contents of Multilayer Graphene, J. Mater. Eng. Perform., 2017, 26(6), p 2776–2783CrossRefGoogle Scholar
  38. 38.
    A. Pauschitz, M. Roy, and F. Franek, Mechanisms of Sliding Wear of Metals and Alloys at Elevated Temperatures, Tribol. Int., 2008, 41(7), p 584–602CrossRefGoogle Scholar
  39. 39.
    F. Bowden and D. Tabor, The Friction and Lubrication of Solids, Clarendon, London, 1986, p 374Google Scholar
  40. 40.
    M.N. Gardos, The Effect of anion Vacancies of the Tribological Properties of Rutile (TiO2−x), Tribol. Trans., 1989, 32(1), p 30–31CrossRefGoogle Scholar
  41. 41.
    M. Gardos, H. Hong, and W. Winer, The Effect of Anion Vacancies on the Tribological Properties of Rutile (TiO2−x), Part II: Experimental Evidence, Tribol. Trans., 1990, 33(2), p 209–220CrossRefGoogle Scholar
  42. 42.
    M. Barekat, R. Razavi, and A. Ghasemi, Wear Behavior of Laser-Cladded Co-Cr-Mo Coating on γ-TiAl Substrate, J. Mater. Eng. Perform., 2017, 26(7), p 3226–3238CrossRefGoogle Scholar
  43. 43.
    J. Cheng, F. Li, Z. Qiao, S. Zhu, J. Yang, and W. Liu, The Role of Oxidation and Counterface in the High Temperature Tribological Properties of TiAl Intermetallics, Mater. Des., 2015, 84, p 245–253CrossRefGoogle Scholar
  44. 44.
    J. Yang, P. La, W. Liu, and Q. Xue, Tribological Properties of FeAl Intermetallics Under Dry Sliding, Wear, 2004, 257(1), p 104–109CrossRefGoogle Scholar
  45. 45.
    P. La, Q. Xue, and W. Liu, Effects of Boron Doping on Tribological Properties of Ni3Al-Cr7C3 Coatings Under Dry Sliding, Wear, 2001, 249(1), p 93–99CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Daqun Wang
    • 1
  • Dongli Sun
    • 1
  • Xiuli Han
    • 1
    Email author
  • Qing Wang
    • 1
  • Guangwei Wang
    • 1
  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations