Skip to main content
Log in

Development of an Austenitization Kinetics Model for 22MnB5 Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper presents a first-order austenitization kinetics model for 22MnB5 steel, commonly used in hot forming die quenching. Model parameters are derived from constant heating rate dilatometry measurements. Vickers hardness measurements made on coupons that were quenched at intermediate stages of the process were used to verify the model, and the Ac1 and Ac3 temperatures inferred from dilatometry are consistent with correlations found in the literature. The austenitization model was extended to consider non-constant heating rates typical of industrial furnaces and again showed reasonable agreement between predictions and measurements. Finally, the model is used to predict latent heat evolution during industrial heating and is shown to be consistent with values inferred from thermocouple measurements of furnace-heated 22MnB5 coupons reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P.K. Mallick, Ed., Materials, Design and Manufacturing for Lightweight Vehicles, Elsevier, Amsterdam, 2010

    Google Scholar 

  2. J.N. Rasera, K.J. Daun, C.J. Shi, and M. D’Souza, Direct Contact Heating for Hot Forming Die Quenching, Appl. Therm. Eng., 2016, 98, p 1165–1173

    Article  Google Scholar 

  3. V. Ploshikhin, A. Prihodovsky, J. Kaiser, R. Bisping, et al., New Heating Technology for Furnace-Free Press Hardening Process, in Tools and Technologies for Processing Ultra-High Strength Materials, Graz, Austria, 2011

  4. D.P. Datta and A.M. Gokhale, Austenitization Kinetics of Pearlite and Ferrite Aggregates in a Low Carbon Steel Containing 0.15 wt pct C, Metall. Trans. A, 1981, 12A, p 443–450

    Article  Google Scholar 

  5. A. Roosz, Z. Gacsi, and E.G. Fuchs, Isothermal Formation of Austenite in Eutectoid Plain Carbon Steel, Acta Metall., 1983, 31, p 509–517

    Article  Google Scholar 

  6. C.G. de Andrés, F.G. Caballero, C. Capdevila, and H.K.D.H. Bhadeshia, Modelling of Kinetics and Dilatometric Behavior of Non-isothermal Pearlite-to-Austenite Transformation in an Eutectoid Steel, Scr. Mater., 1998, 39, p 791–796

    Article  Google Scholar 

  7. F.G. Caballero, C. Capdevila, and C.G. de Andrés, Influence of Scale Parameters of Pearlite on the Kinetics of Anisothermal Pearlite-to-Austenite Transformation in a Eutectoid Steel, Scr. Mater., 2000, 42, p 1159–1165

    Article  Google Scholar 

  8. F.G. Caballero, C. Capdevila, and C.G. de Andrés, Modelling of Kinetics and Dilatometric Behaviour of Austenite Formation in a Low-Carbon Steel with a Ferrite Plus Pearlite Initial Microstructure, J. Mater. Sci., 2002, 37, p 3533–3540

    Article  Google Scholar 

  9. F.G. Caballero, C. Capdevila, and C.G. de Andrés, Analysis of Effect of Alloying Elements on Martensite Start Temperature of Steels, ISIJ Int., 2003, 43, p 726–735

    Article  Google Scholar 

  10. S.K. Nath, S. Ray, V.N.S. Mathur, and M.L. Kapoor, Non-isothermal Austenitisation Kinetics and Theoretical Determination of Intercritical Annealing Time for Dual-Phase Steels, ISIJ Int., 1994, 34(2), p 191–197

    Article  Google Scholar 

  11. C.I. Garcia and A.J. DeArdo, Formation of Austenite in 1.5 pct Mn Steels, Metall. Trans. A, 1981, 12A, p 521–530

    Article  Google Scholar 

  12. J.J. Yi, I.S. Kim, and H.S. Choi, Austenitization During Intercritical Annealing of an Fe–C–Si–Mn Dual-Phase Steel, Metall. Trans. A, 1985, 16A, p 1237–1245

    Article  Google Scholar 

  13. G.R. Speich, V.A. Demarest, and R.L. Miller, Formation of Austenite During Intercritical Annealing of Dual-Phase Steels, Metall. Trans. A, 1981, 12A, p 1419–1428

    Article  Google Scholar 

  14. J. Huang, W.J. Poole, and M. Militzer, Austenite Formation During Intercritical Annealing, Metall. Trans. A, 2004, 35A, p 3363–3375

    Article  Google Scholar 

  15. M. Kulakov, W.J. Poole, and M. Militzer, The Effect of the Initial Microstructure on Recrystallization and Austenite Formation in a DP600 Steel, Metall. Trans. A, 2013, 44A, p 3564–3576

    Article  Google Scholar 

  16. M. Kulakov, W.J. Poole, and M. Militzer, A Microstructure Evolution Model for Intercritical Annealing of a Low-Carbon Dual-Phase Steel, ISIJ Int., 2014, 54, p 2627–2636

    Article  Google Scholar 

  17. H.E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 1957, 29, p 1702–1706

    Article  Google Scholar 

  18. N. Li, J. Lin, D.S. Balint, and T.A. Dean, Experimental Characterization of the Effects If Thermal Conditions on Austenite Formation for Hot Stamping of Boron Steel, J. Mater. Process. Technol., 2016, 231, p 254–264

    Article  Google Scholar 

  19. N. Li, J. Lin, D.S. Balint, and T.A. Dean, Modeling of Austenite Formation During Heating in Boron Steel Hot Stamping Processes, J. Mater. Process. Technol., 2016, 237, p 394–401

    Article  Google Scholar 

  20. A.W. Coats and J.P. Redfern, Kinetic Parameters from Thermogravimetric Data, Nature, 1964, 201, p 68–69

    Article  Google Scholar 

  21. A.W. Coats and J.P. Redfern, Kinetic Parameters from Thermogravimetric Data. II, J. Polym. Sci. Part B Polym. Lett., 1965, 3, p 917–920

    Article  Google Scholar 

  22. ASTM Standard E1097-12(2012), ASTM International, West Conshohocken, PA, 2010

  23. ASTM Standard E1019-11 (2011), ASTM International, West Conshohocken, PA, 2010

  24. A. Khawam and D.R. Flanagan, Solid-State Kinetic Models: Basics and Mathematical Fundamentals, J. Phys. Chem. B, 2006, 110B, p 17315–17328

    Article  Google Scholar 

  25. ASTM Standard A1033-10(2015), ASTM International, West Conshohocken, PA, 2010

  26. H.P. Hougardy, Werkstoffkunde Stahl Band 1: Grun, Verlag Stahleisen G.m.b.H., Düsseldorf, 1984, p 229

    Google Scholar 

  27. O.G. Kasatkin, B.B. Vinokur, and V.L. Pilyushenko, Computational Models for Determination of the Critical Points of Steel, Metallovedenie i Termicheskaya Obrabotka Metallov, 1984, 1, p 20–22

    Google Scholar 

  28. J. Trzaska and L.A. Dobrzaski, Modelling of CCT Diagrams for Engineering and Constructional Steels, J. Mater. Process. Technol., 2007, 192–193, p 504–510

    Article  Google Scholar 

  29. B. Pawłowski, Critical Points of Hypoeutectoid Steel - Prediction of Pearlite Dissolution Finish Temperature Ac1f, J. Achiev. Mater. Manuf. Eng., 2011, 49, p 331–337

    Google Scholar 

  30. S. Vyazokin, Evaluation of Activation Energy of Thermally Stimulated Solid-State Reactions Under Arbitrary Variation of Temperature, J. Comput. Chem., 1997, 18, p 393–402

    Article  Google Scholar 

  31. K.S. Jhajj, S.R. Slezak, and K.J. Daun, Inferring the Specific Heat of an Ultra High Strength Steel During the Heating Stage of Hot Forming Die Quenching, Through Inverse Analysis, Appl. Therm. Eng., 2015, 83, p 98–107

    Article  Google Scholar 

  32. Lehmann, H.: Developments in the Field of Schwartz Heat Treatment Furnaces for Press Hardening Industry, in 3rd International Conference on Hot Sheet Metal Forming of High-performance Steel Proceedings, Kassel, Germany, 2011 (p 13–17)

  33. M. Rappaz, Modelling of Microstructure Formation in Solidification Processes, Int. Mater. Rev., 1989, 34, p 93–124

    Article  Google Scholar 

  34. ArcelorMittal, Properties of Usibor® 1500 P

  35. Stull, D.R., Prophet, H.: JANAF Thermochemical Tables. No. NSRDS-NBS-37. National Standard Reference Data System, 1971

  36. G.P. Krielaart, C.M. Brakman, and S. Zwaag, Analysis of Phase Transformation in Fe–C Alloys Using Differential Scanning Calorimetry, J. Mater. Sci., 1996, 51, p 1501–1508

    Article  Google Scholar 

  37. Twynstra, M.G., Daun, K.J., Caron, E.F.J.R., Adam, N., Womack, D.: ASME Summer Heat Transfer Conference (Minneapolis MN, 2013)

  38. Q. Lai, M. Goune, A. Perlade, T. Pardoen, P. Jacques, O. Bouaziz, and Y. Brechet, Mechanism of Austenite Formation from Spheroidized Microstructure in an Intermediate Fe–0.1 C–3.5 Mn Steel, Metall. Mater. Trans. A, 2016, 47, p 3375–3386

    Article  Google Scholar 

  39. J. Kučera and K. Stránský, Diffusion in Iron, Iron Solid Solutions and Steels, Mater. Sci. Eng., 1982, 52, p 1–38

    Article  Google Scholar 

Download references

Acknowledgments

This research was carried out under the National Science and Engineering Research Council Automotive Partnerships Canada (NSERC-APC 447344-12). The authors would like to thank Mr. Cyrus Yao (Promatek Research Centre) and Mr. Ron Soldaat (Arcelor-Mittal) for their assistance and material support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Di Ciano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Ciano, M., Field, N., Wells, M.A. et al. Development of an Austenitization Kinetics Model for 22MnB5 Steel. J. of Materi Eng and Perform 27, 1792–1802 (2018). https://doi.org/10.1007/s11665-018-3262-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3262-5

Keywords

Navigation