Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1514–1529 | Cite as

Investigation of the Microstructural Changes and Hardness Variations of Sub-Zero Treated Cr-V Ledeburitic Tool Steel Due to the Tempering Treatment

  • Peter Jurči
  • Mária Dománková
  • Jana Ptačinová
  • Matej Pašák
  • Martin Kusý
  • Petra Priknerová


The microstructure and tempering response of Cr-V ledeburitic steel Vanadis 6 subjected to sub-zero treatment at − 196 °C for 4 h have been examined with reference to the same steel after conventional heat treatment. The obtained experimental results infer that sub-zero treatment significantly reduces the retained austenite amount, makes an overall refinement of microstructure, and induces a significant increase in the number and population density of small globular carbides with a size 100-500 nm. At low tempering temperatures, the transient M3C-carbides precipitated, whereas their number was enhanced by sub-zero treatment. The presence of chromium-based M7C3 precipitates was evidenced after tempering at the temperature of normal secondary hardening; this phase was detected along with the M3C. Tempering above 470 °C converts almost all the retained austenite in conventionally quenched specimens while the transformation of retained austenite is rather accelerated in sub-zero treated material. As a result of tempering, a decrease in the population density of small globular carbides was recorded; however, the number of these particles retained much higher in sub-zero treated steel. Elevated hardness of sub-zero treated steel can be referred to more completed martensitic transformation and enhanced number of small globular carbides; this state is retained up to a tempering temperature of around 500 °C in certain extent. Correspondingly, lower as-tempered hardness of sub-zero treated steel tempered above 500 °C is referred to much lower contribution of the transformation of retained austenite, and to an expectedly lower amount of precipitated alloy carbides.


Cr-V ledeburitic steel hardness microstructure precipitation sub-zero treatment tempering 



The authors acknowledge that the paper is a result of experiments realized within the Project VEGA 1/0735/14. In addition, this publication is the result of the Project implementation “Centre for Development and Application of Advanced Diagnostic Methods in Processing of Metallic and Non-Metallic Materials—APRODIMET”, ITMS: 26220120014, supported by the Research & Development Operational Programme funded by the ERDF.


  1. 1.
    P. Jurči, Cr-V Ledeburitic Cold-Work Tool Steels, Mater. Technol., 2011, 45, p 383–394Google Scholar
  2. 2.
    D. Das, A.K. Dutta, and K.K. Ray, Sub-Zero Treatments of AISI, D2 Steel: Part I. Microstructure and Hardness, Mater. Sci. Eng., 2010, A527, p 2182–2193CrossRefGoogle Scholar
  3. 3.
    D. Das and K.K. Ray, Structure-Property Correlation of Sub-Zero Treated AISI, D2 Steel, Mater. Sci. Eng. A, 2012, 541, p 45–60CrossRefGoogle Scholar
  4. 4.
    D.N. Collins, Deep Cryogenic Treatment of Tool Steels—A Review, Heat Treat. Met., 1996, 2, p 40–42Google Scholar
  5. 5.
    K. Amini, A. Akhbarizadeh, and S. Javadpour, Investigating the Effect of Holding Duration on the Microstructure of 1.2080 Tool Steel During the Deep Cryogenic Treatment, Vacuum, 2012, 86, p 1534–1540CrossRefGoogle Scholar
  6. 6.
    A. Akhbarizadeh, M.A. Golozar, A. Shafeie, and M. Kholghy, Effects of Austenitizing Time on Wear Behaviour of D6 Tool Steel After Deep Cryogenic Treatment, J. Iron Steel Res., 2009, 16(6), p 29–32CrossRefGoogle Scholar
  7. 7.
    A. Akhbarizadeh, S. Javadpour, K. Amini, and A.H. Yaghtin, Investigating the Effect of Ball Milling During the Deep Cryogenic Heat Treatment of the 1.2080 Tool Steel, Vacuum, 2013, 90, p 70–74CrossRefGoogle Scholar
  8. 8.
    A.I. Tyshchenko, W. Theisen, A. Oppenkowski, S. Siebert, O.N. Razumov, A.P. Skoblik, V.A. Sirosh, J.N. Petrov, and V.G. Gavriljuk, Low-Temperature Martensitic Transformation and Deep Cryogenic Treatment of a Tool Steel, Mater. Sci. Eng. A, 2010, 527, p 7027–7039CrossRefGoogle Scholar
  9. 9.
    P. Jurči, M. Dománková, L. Čaplovič, J. Ptačinová, J. Sobotová, P. Salabová, O. Prikner, B. Šuštaršič, and D. Jenko, Microstructure and Hardness of Sub-Zero Treated and No Tempered P/M Vanadis 6 Ledeburitic Tool Steel, Vacuum, 2015, 111, p 92–101CrossRefGoogle Scholar
  10. 10.
    P. Jurči, J. Sobotová, P. Salabová, O. Prikner, B. Šuštaršič, and D. Jenko, Subzero Treatment of P/M Vanadis 6 Ledeburitic Tool Steel, Int. Heat Treatment Surf. Eng., 2013, 7, p 125–128CrossRefGoogle Scholar
  11. 11.
    M. Villa, K. Pantleon, and M.A.J. Somers, Evolution of Compressive Strains in Retained Austenite During Sub-Zero Celsius Martensite Formation and Tempering, Acta Mater., 2014, 65, p 383–392CrossRefGoogle Scholar
  12. 12.
    P.F. Stratton, Optimising Nano-Carbide Precipitation in Tool Steels, Mater. Sci. Eng., 2007, A449–451, p 809–812CrossRefGoogle Scholar
  13. 13.
    M.J. Van Genderen, A. Boettger, R.J. Cernik, and E.J. Mittemeijer, Early Stages of Decomposition in Iron-Carbon and Iron-Nitrogen Martensites: Diffraction Analysis Using Synchrotron Radiation, Metall. Trans., 1993, 24A, p 1965–1973CrossRefGoogle Scholar
  14. 14.
    M. Preciado and M. Pellizzari, Influence of Deep Cryogenic Treatment on the Thermal Decomposition of Fe-C Martensite, J. Mater. Sci., 2014, 49, p 8183–8191CrossRefGoogle Scholar
  15. 15.
    P. Jurči, Sub-Zero Treatment of Cold Work Tool Steels—Metallurgical Background and the Effect on Microstructure and Properties, HTM J. Heat Treat. Mater., 2017, 72, p 62–68CrossRefGoogle Scholar
  16. 16.
    V.G. Gavriljuk, W. Theisen, V.V. Sirosh, E.V. Polshin, A. Kortmann, G.S. Mogilny, Yu.N. Petrov, and Y.V. Tarusin, Low-Temperature Martensitic Transformation in Tool Steels in Relation to their Deep Cryogenic Treatment, Acta Mater., 2013, 61, p 1705–1715CrossRefGoogle Scholar
  17. 17.
    V.G. Gavriljuk, V.V. Sirosh, Yu.N. Petrov, A.I. Tyshchenko, W. Theisen, and A. Kortmann, Carbide Precipitation During Tempering of a Tool Steel Subjected to Deep Cryogenic Treatment, Metall. Mater. Trans., 2014, 45A, p 2453–2465CrossRefGoogle Scholar
  18. 18.
    D.N. Collins and J. Dormer, Deep Cryogenic Treatment of a D2 Cold-Work Tool Steel, Heat Treat. Met., 1997, 24, p 71–74Google Scholar
  19. 19.
    K. Amini, A. Akhbarizadeh, and S. Javadpour, Investigating the Effect of the Quench Environment on the Final Microstructure and Wear Behaviour of 1.2080 Tool Steel After Deep Cryogenic Heat Treatment, Mater. Des., 2013, 45, p 316–322CrossRefGoogle Scholar
  20. 20.
    A. Akhbarizadeh, K. Amini, and S. Javadpour, Effect of Simultaneous Magnetic Field and Deep Cryogenic Heat Treatment on the Microstructure of 1.2080 Tool Steel, Mater. Des., 2012, 35, p 484–490CrossRefGoogle Scholar
  21. 21.
    K. Amini, A. Akhbarizadeh, and S. Javadpour, Effect of Deep Cryogenic Treatment on the Formation of Nano-Sized Carbides and the Wear Behaviour of D2 Tool Steel, Int. J. Miner. Metall. Mater., 2012, 19, p 795–799CrossRefGoogle Scholar
  22. 22.
    P. Jurči, M. Kusý, J. Ptačinová, V. Kuracina, and P. Priknerová, Long-Term Sub-Zero Treatment of P/M Vanadis 6 Ledeburitic Tool Steel—A Preliminary Study, Manuf. Technol., 2015, 15, p 41–47Google Scholar
  23. 23.
    H. Paydar, K. Amini, and A. Akhbarizadeh, Investigating the Effect of Deep Cryogenic Heat Treatment on the Wear Behaviour of 100Cr6 Alloy Steel, Kovove Mater., 2014, 52, p 163–169Google Scholar
  24. 24.
    H. Berns, Restaustenit in ledeburitischen Chromstählen und seine Umwandlung durch Kaltumformen, Tiefkühlen und Anlassen, HTM J. Heat Treat. Mater., 1974, 29, p 236–247 (In German)Google Scholar
  25. 25.
    D.N. Collins, Cryogenic Treatment of Tool Steels, Adv. Mater. Proc., 1998, 12, p 24–29Google Scholar
  26. 26.
    M. Pellizzari and A. Molinari. Deep cryogenic treatment of cold work tool steel, in Proc. of the 6th Int. Tooling Conf., Karlstad, Sweden, 10–13 Sept 2002, ed by J. Bergstrom, G. Fredriksson, M. Johansson, O. Kotik, F. Thuvander, Karlstad University, pp. 547–558Google Scholar
  27. 27.
    J. Sobotová, P. Jurči, and I. Dlouhý, The Effect of Subzero Treatment on Microstructure, Fracture toughness, and Wear Resistance of Vanadis 6 Tool Steel, Mater. Sci. Eng. A, 2016, 652, p 192–204CrossRefGoogle Scholar
  28. 28.
    ASTM, E975-13: Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation, ASTM Book of Standards, vol. 3.01, ASTM, West Conshohocken, 2004Google Scholar
  29. 29.
    A. Stojko, M.F. Hansen, J. Slycke, and M.A.J. Somers, Isothermal Martensite Formation at Sub-Zero Temperatures, J. ASTM Int., 2011, 8, p 1–9CrossRefGoogle Scholar
  30. 30.
    L. Cheng, C.M. Brakman, B.M. Korevaar, and E.J. Mittemeijer, The Tempering of Iron-Carbon Martensite; Dilatometric and Calorimetric Analysis, Metall. Trans., 1988, 19A, p 2415–2426CrossRefGoogle Scholar
  31. 31.
    F. Meng, K. Tagashira, R. Azuma, and H. Sohma, Role of Eta-carbide Precipitation’s in the Wear Resistance Improvements of Fe-12Cr-Mo-V-1.4C Tool Steel by Cryogenic Treatment, ISIJ Int., 1994, 34, p 205–210CrossRefGoogle Scholar
  32. 32.
    M. Pasak, R. Cicka, P. Bilek, P. Jurci, and L. Caplovic, Study of Phase Transformations in Cr-V Tool Steel, Mater. Technol., 2014, 48, p 693–696Google Scholar
  33. 33.
    T. Nykiel and T. Hryniewicz, Transformations of Carbides During Tempering of D3 Tool Steel, J. Mater. Eng. Perform., 2014, 23, p 2050–2054CrossRefGoogle Scholar
  34. 34.
    A. Kulmburg, E. Putzgruber, F. Korntheurer, and E. Kaiser, Beitrag zum Tiefkuehlen von Schnellarbeitsstaehlen, HTM, 1992, 47, p 318–323 (In German)Google Scholar
  35. 35.
    A. Akhbarizadeh and S. Javadpour, Investigating the Effect of As-Quenched Vacancies in the Final Microstructure of 1.2080 Tool Steel During the Deep Cryogenic Heat Treatment, Mater. Lett., 2013, 93, p 247–250CrossRefGoogle Scholar
  36. 36.
    P.F. da Silva Farina, A.B. Farina, C.A. Barbosa and H. Goldenstein. The effects of cryogenic and stress relief treatments in the temper carbides precipitation of an AISI D2 tool steel, in Proc. of the 9th Int. Tooling Conf., Leoben, Austria, 11–14 Sept 2012, ed by Leitner, H. Montanuniversitat Leoben, pp 42–50Google Scholar
  37. 37.
    P. Bílek, J. Sobotová, and P. Jurči, Evaluation of the Microstructural Changes in Cr-V Ledeburitic Tool Steel Depending on the Austenitization Temperature, Mater. Technol., 2011, 45, p 489–493Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Peter Jurči
    • 1
  • Mária Dománková
    • 1
  • Jana Ptačinová
    • 1
  • Matej Pašák
    • 1
  • Martin Kusý
    • 1
  • Petra Priknerová
    • 2
  1. 1.Faculty of Materials Science and Technology in TrnavaTrnavaSlovakia
  2. 2.Prikner - tepelné zpracování kovůMartínkoviceCzech Republic

Personalised recommendations