Skip to main content
Log in

Investigation of the Microstructural Changes and Hardness Variations of Sub-Zero Treated Cr-V Ledeburitic Tool Steel Due to the Tempering Treatment

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructure and tempering response of Cr-V ledeburitic steel Vanadis 6 subjected to sub-zero treatment at − 196 °C for 4 h have been examined with reference to the same steel after conventional heat treatment. The obtained experimental results infer that sub-zero treatment significantly reduces the retained austenite amount, makes an overall refinement of microstructure, and induces a significant increase in the number and population density of small globular carbides with a size 100-500 nm. At low tempering temperatures, the transient M3C-carbides precipitated, whereas their number was enhanced by sub-zero treatment. The presence of chromium-based M7C3 precipitates was evidenced after tempering at the temperature of normal secondary hardening; this phase was detected along with the M3C. Tempering above 470 °C converts almost all the retained austenite in conventionally quenched specimens while the transformation of retained austenite is rather accelerated in sub-zero treated material. As a result of tempering, a decrease in the population density of small globular carbides was recorded; however, the number of these particles retained much higher in sub-zero treated steel. Elevated hardness of sub-zero treated steel can be referred to more completed martensitic transformation and enhanced number of small globular carbides; this state is retained up to a tempering temperature of around 500 °C in certain extent. Correspondingly, lower as-tempered hardness of sub-zero treated steel tempered above 500 °C is referred to much lower contribution of the transformation of retained austenite, and to an expectedly lower amount of precipitated alloy carbides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. P. Jurči, Cr-V Ledeburitic Cold-Work Tool Steels, Mater. Technol., 2011, 45, p 383–394

    Google Scholar 

  2. D. Das, A.K. Dutta, and K.K. Ray, Sub-Zero Treatments of AISI, D2 Steel: Part I. Microstructure and Hardness, Mater. Sci. Eng., 2010, A527, p 2182–2193

    Article  Google Scholar 

  3. D. Das and K.K. Ray, Structure-Property Correlation of Sub-Zero Treated AISI, D2 Steel, Mater. Sci. Eng. A, 2012, 541, p 45–60

    Article  Google Scholar 

  4. D.N. Collins, Deep Cryogenic Treatment of Tool Steels—A Review, Heat Treat. Met., 1996, 2, p 40–42

    Google Scholar 

  5. K. Amini, A. Akhbarizadeh, and S. Javadpour, Investigating the Effect of Holding Duration on the Microstructure of 1.2080 Tool Steel During the Deep Cryogenic Treatment, Vacuum, 2012, 86, p 1534–1540

    Article  Google Scholar 

  6. A. Akhbarizadeh, M.A. Golozar, A. Shafeie, and M. Kholghy, Effects of Austenitizing Time on Wear Behaviour of D6 Tool Steel After Deep Cryogenic Treatment, J. Iron Steel Res., 2009, 16(6), p 29–32

    Article  Google Scholar 

  7. A. Akhbarizadeh, S. Javadpour, K. Amini, and A.H. Yaghtin, Investigating the Effect of Ball Milling During the Deep Cryogenic Heat Treatment of the 1.2080 Tool Steel, Vacuum, 2013, 90, p 70–74

    Article  Google Scholar 

  8. A.I. Tyshchenko, W. Theisen, A. Oppenkowski, S. Siebert, O.N. Razumov, A.P. Skoblik, V.A. Sirosh, J.N. Petrov, and V.G. Gavriljuk, Low-Temperature Martensitic Transformation and Deep Cryogenic Treatment of a Tool Steel, Mater. Sci. Eng. A, 2010, 527, p 7027–7039

    Article  Google Scholar 

  9. P. Jurči, M. Dománková, L. Čaplovič, J. Ptačinová, J. Sobotová, P. Salabová, O. Prikner, B. Šuštaršič, and D. Jenko, Microstructure and Hardness of Sub-Zero Treated and No Tempered P/M Vanadis 6 Ledeburitic Tool Steel, Vacuum, 2015, 111, p 92–101

    Article  Google Scholar 

  10. P. Jurči, J. Sobotová, P. Salabová, O. Prikner, B. Šuštaršič, and D. Jenko, Subzero Treatment of P/M Vanadis 6 Ledeburitic Tool Steel, Int. Heat Treatment Surf. Eng., 2013, 7, p 125–128

    Article  Google Scholar 

  11. M. Villa, K. Pantleon, and M.A.J. Somers, Evolution of Compressive Strains in Retained Austenite During Sub-Zero Celsius Martensite Formation and Tempering, Acta Mater., 2014, 65, p 383–392

    Article  Google Scholar 

  12. P.F. Stratton, Optimising Nano-Carbide Precipitation in Tool Steels, Mater. Sci. Eng., 2007, A449–451, p 809–812

    Article  Google Scholar 

  13. M.J. Van Genderen, A. Boettger, R.J. Cernik, and E.J. Mittemeijer, Early Stages of Decomposition in Iron-Carbon and Iron-Nitrogen Martensites: Diffraction Analysis Using Synchrotron Radiation, Metall. Trans., 1993, 24A, p 1965–1973

    Article  Google Scholar 

  14. M. Preciado and M. Pellizzari, Influence of Deep Cryogenic Treatment on the Thermal Decomposition of Fe-C Martensite, J. Mater. Sci., 2014, 49, p 8183–8191

    Article  Google Scholar 

  15. P. Jurči, Sub-Zero Treatment of Cold Work Tool Steels—Metallurgical Background and the Effect on Microstructure and Properties, HTM J. Heat Treat. Mater., 2017, 72, p 62–68

    Article  Google Scholar 

  16. V.G. Gavriljuk, W. Theisen, V.V. Sirosh, E.V. Polshin, A. Kortmann, G.S. Mogilny, Yu.N. Petrov, and Y.V. Tarusin, Low-Temperature Martensitic Transformation in Tool Steels in Relation to their Deep Cryogenic Treatment, Acta Mater., 2013, 61, p 1705–1715

    Article  Google Scholar 

  17. V.G. Gavriljuk, V.V. Sirosh, Yu.N. Petrov, A.I. Tyshchenko, W. Theisen, and A. Kortmann, Carbide Precipitation During Tempering of a Tool Steel Subjected to Deep Cryogenic Treatment, Metall. Mater. Trans., 2014, 45A, p 2453–2465

    Article  Google Scholar 

  18. D.N. Collins and J. Dormer, Deep Cryogenic Treatment of a D2 Cold-Work Tool Steel, Heat Treat. Met., 1997, 24, p 71–74

    Google Scholar 

  19. K. Amini, A. Akhbarizadeh, and S. Javadpour, Investigating the Effect of the Quench Environment on the Final Microstructure and Wear Behaviour of 1.2080 Tool Steel After Deep Cryogenic Heat Treatment, Mater. Des., 2013, 45, p 316–322

    Article  Google Scholar 

  20. A. Akhbarizadeh, K. Amini, and S. Javadpour, Effect of Simultaneous Magnetic Field and Deep Cryogenic Heat Treatment on the Microstructure of 1.2080 Tool Steel, Mater. Des., 2012, 35, p 484–490

    Article  Google Scholar 

  21. K. Amini, A. Akhbarizadeh, and S. Javadpour, Effect of Deep Cryogenic Treatment on the Formation of Nano-Sized Carbides and the Wear Behaviour of D2 Tool Steel, Int. J. Miner. Metall. Mater., 2012, 19, p 795–799

    Article  Google Scholar 

  22. P. Jurči, M. Kusý, J. Ptačinová, V. Kuracina, and P. Priknerová, Long-Term Sub-Zero Treatment of P/M Vanadis 6 Ledeburitic Tool Steel—A Preliminary Study, Manuf. Technol., 2015, 15, p 41–47

    Google Scholar 

  23. H. Paydar, K. Amini, and A. Akhbarizadeh, Investigating the Effect of Deep Cryogenic Heat Treatment on the Wear Behaviour of 100Cr6 Alloy Steel, Kovove Mater., 2014, 52, p 163–169

    Google Scholar 

  24. H. Berns, Restaustenit in ledeburitischen Chromstählen und seine Umwandlung durch Kaltumformen, Tiefkühlen und Anlassen, HTM J. Heat Treat. Mater., 1974, 29, p 236–247 (In German)

    Google Scholar 

  25. D.N. Collins, Cryogenic Treatment of Tool Steels, Adv. Mater. Proc., 1998, 12, p 24–29

    Google Scholar 

  26. M. Pellizzari and A. Molinari. Deep cryogenic treatment of cold work tool steel, in Proc. of the 6th Int. Tooling Conf., Karlstad, Sweden, 10–13 Sept 2002, ed by J. Bergstrom, G. Fredriksson, M. Johansson, O. Kotik, F. Thuvander, Karlstad University, pp. 547–558

  27. J. Sobotová, P. Jurči, and I. Dlouhý, The Effect of Subzero Treatment on Microstructure, Fracture toughness, and Wear Resistance of Vanadis 6 Tool Steel, Mater. Sci. Eng. A, 2016, 652, p 192–204

    Article  Google Scholar 

  28. ASTM, E975-13: Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation, ASTM Book of Standards, vol. 3.01, ASTM, West Conshohocken, 2004

    Google Scholar 

  29. A. Stojko, M.F. Hansen, J. Slycke, and M.A.J. Somers, Isothermal Martensite Formation at Sub-Zero Temperatures, J. ASTM Int., 2011, 8, p 1–9

    Article  Google Scholar 

  30. L. Cheng, C.M. Brakman, B.M. Korevaar, and E.J. Mittemeijer, The Tempering of Iron-Carbon Martensite; Dilatometric and Calorimetric Analysis, Metall. Trans., 1988, 19A, p 2415–2426

    Article  Google Scholar 

  31. F. Meng, K. Tagashira, R. Azuma, and H. Sohma, Role of Eta-carbide Precipitation’s in the Wear Resistance Improvements of Fe-12Cr-Mo-V-1.4C Tool Steel by Cryogenic Treatment, ISIJ Int., 1994, 34, p 205–210

    Article  Google Scholar 

  32. M. Pasak, R. Cicka, P. Bilek, P. Jurci, and L. Caplovic, Study of Phase Transformations in Cr-V Tool Steel, Mater. Technol., 2014, 48, p 693–696

    Google Scholar 

  33. T. Nykiel and T. Hryniewicz, Transformations of Carbides During Tempering of D3 Tool Steel, J. Mater. Eng. Perform., 2014, 23, p 2050–2054

    Article  Google Scholar 

  34. A. Kulmburg, E. Putzgruber, F. Korntheurer, and E. Kaiser, Beitrag zum Tiefkuehlen von Schnellarbeitsstaehlen, HTM, 1992, 47, p 318–323 (In German)

    Google Scholar 

  35. A. Akhbarizadeh and S. Javadpour, Investigating the Effect of As-Quenched Vacancies in the Final Microstructure of 1.2080 Tool Steel During the Deep Cryogenic Heat Treatment, Mater. Lett., 2013, 93, p 247–250

    Article  Google Scholar 

  36. P.F. da Silva Farina, A.B. Farina, C.A. Barbosa and H. Goldenstein. The effects of cryogenic and stress relief treatments in the temper carbides precipitation of an AISI D2 tool steel, in Proc. of the 9th Int. Tooling Conf., Leoben, Austria, 11–14 Sept 2012, ed by Leitner, H. Montanuniversitat Leoben, pp 42–50

  37. P. Bílek, J. Sobotová, and P. Jurči, Evaluation of the Microstructural Changes in Cr-V Ledeburitic Tool Steel Depending on the Austenitization Temperature, Mater. Technol., 2011, 45, p 489–493

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge that the paper is a result of experiments realized within the Project VEGA 1/0735/14. In addition, this publication is the result of the Project implementation “Centre for Development and Application of Advanced Diagnostic Methods in Processing of Metallic and Non-Metallic Materials—APRODIMET”, ITMS: 26220120014, supported by the Research & Development Operational Programme funded by the ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Jurči.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jurči, P., Dománková, M., Ptačinová, J. et al. Investigation of the Microstructural Changes and Hardness Variations of Sub-Zero Treated Cr-V Ledeburitic Tool Steel Due to the Tempering Treatment. J. of Materi Eng and Perform 27, 1514–1529 (2018). https://doi.org/10.1007/s11665-018-3261-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3261-6

Keywords

Navigation