Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1570–1579 | Cite as

Experimental Investigation of Microstructure and Phase Transitions in Ag-Cu-Zn Brazing Alloys

  • Stevan P. Dimitrijević
  • Dragan Manasijević
  • Željko Kamberović
  • Silvana B. Dimitrijević
  • Miodrag Mitrić
  • Milan Gorgievski
  • Srba Mladenović


Microstructure and phase transitions of selected brazing alloys from the Ag-Cu-Zn ternary system were investigated. Four ternary alloys with silver content in the compositional range from 25 to 60 wt.% were studied using x-ray diffraction (XRD) and scanning electron microscopy coupled with the energy-dispersive spectroscopy (SEM–EDS). Phase transitions of the investigated alloys were measured using differential scanning calorimetry (DSC). Experimentally obtained results were compared with the results of a thermodynamic calculation of the phase equilibria according to the CALPHAD method. The experiments confirmed the optimized thermodynamic parameters for the calculations from the thermodynamic assessment in literature. Phase compositions, liquidus and solidus temperatures were confirmed by the EDS and DTA methods. Additionally, the calculated solidification paths and predicted phase transformations were in agreement with the SEM images.


advanced characterization annealing casting and solidification electron microscopy silver brazing alloys x-ray 



This work has been supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Projects Nos. TR 34033 and ON 172037. Calculations were performed by Pandat 8.1 software.


  1. 1.
    L. Sisamoutha, L. Hamdia, and T. Arigab, Investigation of Gap Filling Ability of Ag-Cu-In Brazing Filler Metals, J. Alloys Compd., 2010, 504, p 325–329CrossRefGoogle Scholar
  2. 2.
    P. He, J.C. Feng, and H. Zhou, Microstructure and Strength of Brazed Joints of Ti3Al-Base Alloy with Different Filler Metals, Mater. Charact., 2005, 54, p 338–346CrossRefGoogle Scholar
  3. 3.
    L. Zhang, J. Feng, Z. Li, and H. Liu, Evaluation of Corrosion and Wear Resistance of Friction Stir Welded ZK60 Alloy, Sci. Technol. Weld. Join., 2004, 9, p 280–282CrossRefGoogle Scholar
  4. 4.
    L. Huijie and F. Jicai, Vacuum Brazing TiAl-Based Alloy to 40Cr Steel Using Ag-Cu-Zn Filler Metal, J. Mater. Sci. Lett., 2002, 21, p 9–10CrossRefGoogle Scholar
  5. 5.
    Y. Meng, X. Weihao, Z. Xiuhai, Q. Jun, and Y. Zhenghua, Microstructure and Shear Strength of the Brazed Joint of Ti(C, N)-Based Cermet to Steel, Rare Met., 2010, 29, p 72–77CrossRefGoogle Scholar
  6. 6.
    T. Watanabe, A. Yanagisawa, and T. Sasaki, Development of Ag Based Brazing Filler Metal with Low Melting Point, Sci. Technol. Weld. Join., 2011, 16, p 502–508CrossRefGoogle Scholar
  7. 7.
    C. Ma, S. Xue, and B. Wang, Study on Novel Ag-Cu-Zn-Sn Brazing Filler Metal Bearing Ga, J. Alloys Compd., 2016, 688, p 854–862CrossRefGoogle Scholar
  8. 8.
    L. Zhongmin, X. Songbai, H. Xianpeng, G. Liyong, and G. Wenhua, Study on Microstructure and Property of Brazed Joint of AgCuZn-X(Ga, Sn, In, Ni) Brazing Alloy, Rare Metal Mater. Eng., 2010, 39, p 397–400CrossRefGoogle Scholar
  9. 9.
    Z.R. Li, J. Cao, B. Liu, and J.C. Feng, Effect of La Content on Microstructure Evolution of 20Ag-Cu-Zn-Sn-P-La Filler Metals and Properties of Joints, Sci. Technol. Weld. Join., 2010, 15, p 59–63CrossRefGoogle Scholar
  10. 10.
    K. Zeng and K.N. Tu, Six Cases of Reliability Study of Pb-Free Solder Joints in Electronic Packaging Technology, Mater. Sci. Eng., R, 2002, 38, p 55–105CrossRefGoogle Scholar
  11. 11.
    F. Gao and T. Takemoto, Mechanical Properties Evolution of Sn-3.5 Ag Based Lead-Free Solders by Nanoindentation, Mater. Lett., 2006, 60, p 2315–2318CrossRefGoogle Scholar
  12. 12.
    H. Wang, S.B. Xue, F. Zhao et al., Effects of Ga, Al, Ag, Ce Multi-additions on the Properties of Sn-9Zn Lead-Free Solder, J. Mater. Sci.: Mater. Electron., 2010, 21, p 111–119Google Scholar
  13. 13.
    H. Wang and S. Xue, Effect of Ag on the Properties of Solders and Brazing Filler Metals, J. Mater. Sci.: Mater. Electron., 2016, 27, p 1–13Google Scholar
  14. 14.
    H. Okamoto, M.E. Schlesinger, and E.M. Mueller, Ed., ASM Handbook Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, 1992Google Scholar
  15. 15.
    K.W. Andrews, H.E. Davies, W. Hume-Rothery, and C.R. Oswin, The Equilibrium Diagram of the System Silver-Zinc, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci, 1941, A177, p 149–167CrossRefGoogle Scholar
  16. 16.
    S. Noguchi, An Experimental Study on the Stability of the ζ-phase in the Silver-Zinc System, J. Phys. Soc. Jpn., 1962, 17, p 1844–1856CrossRefGoogle Scholar
  17. 17.
    H. Iwasaki, T. Fujimura, M. Ichikawa, S. Endo, and M. Wakatsuki, Pressure-Induced Phase Transformation in AgZn, J. Phys. Chem. Solids, 1985, 46, p 463–468CrossRefGoogle Scholar
  18. 18.
    V.T. Witusiewicz, S.G. Fries, U. Hecht, A. Drevermann, and S. Rex, Enthalpies of Formation Measurements and Thermodynamic Description of the Ag-Cu-Zn System, Int. J. Mater. Res., 2006, 97, p 556–568Google Scholar
  19. 19.
    J. Wang, P. Chartrand, and I.H. Jung, Thermodynamic Description of the Ag-(Ca, Li, Zn) and Ca-(In, Li) Binary Systems, Calphad, 2015, 50, p 68–81CrossRefGoogle Scholar
  20. 20.
    K. Labisz, Z. Rdzawski, and M. Pawlyta, Ocena mikrostruktury dwuskładnikowego stopu Ag-Cu starzonego w długim czasie, J. Arch. Mater. Sci. Eng., 2011, 49, p 15–24Google Scholar
  21. 21.
    L. Moser, J. Otto, and W. Thomas, Gasthermometrische Messungen bei Hohen Temperaturen. III, Z. Phys., 1963, 175, p 327–336CrossRefGoogle Scholar
  22. 22.
    P.R. Subramanian and J.H. Perepezko, The Ag-Cu (Silver-Copper) System, J. Phase Equilib., 1993, 14, p 62–75CrossRefGoogle Scholar
  23. 23.
    K. Fitzner, Q. Guo, J. Wang, and O.J. Kleppa, Enthalpies of Liquid–Liquid Mixing in the Systems Cu-Ag, Cu-Au and Ag-Au by Using an In Situ Mixing Device in a High Temperature Single-Unit Differential Calorimeter, J. Alloys Compd, 1999, 291, p 190–200CrossRefGoogle Scholar
  24. 24.
    J.B. Liu, L. Meng, and Y.W. Zeng, Microstructure Evolution and Properties of Cu-Ag Microcomposites with Different Ag Content, Mat. Sci. Eng. A, 2006, 435–436, p 237–244CrossRefGoogle Scholar
  25. 25.
    A.E. Gheribia, J. Rogeza, F. Marinellib, J.C. Mathieua, and M.C. Record, Introduction of Pressure in Binary Phase Diagram Calculations. Application to the Ag-Cu System, Calphad, 2007, 31, p 380–389CrossRefGoogle Scholar
  26. 26.
    G. Garzel, J. Janczak-Rusch, and L. Zabdyr, Reassessment of the Ag-Cu Phase Diagram for Nanosystems Including Particle Size and Shape Effect, Calphad, 2012, 36, p 52–56CrossRefGoogle Scholar
  27. 27.
    G.V. Raynor, Annotated Equilibrium Diagram Series, Vol 3, The Institute of Metals, London, 1944Google Scholar
  28. 28.
    T.B. Massalski, J.L. Murray, L.H. Bennett, and H. Baker, Binary Alloy Phase Diagrams, American Society for Metals, Metals Park, 1986Google Scholar
  29. 29.
    M. Kowalski and P.J. Spencer, Thermodynamic Reevaluation of the Cu-Zn System, J. Phase Equilib., 1993, 14, p 432–438CrossRefGoogle Scholar
  30. 30.
    N. David, J.-M. Fiorani, M. Vilasi, and J. Hertz, Thermodynamic Assessment of the Al-Cu-Zn System, Part III: Al-Cu-Zn Ternary System, J. Phase Equilib., 2003, 24, p 240–248CrossRefGoogle Scholar
  31. 31.
    W. Gierlotka and S.W. Chen, Thermodynamic Descriptions of the Cu-Zn System, J. Mater. Res., 2008, 23, p 258–263CrossRefGoogle Scholar
  32. 32.
    S.-M. Liang, H.-M. Hsiao, and R. Schmid-Fetzer, Thermodynamic Assessment of the Al-Cu-Zn System, Part I: Cu-Zn Binary System, Calphad, 2015, 51, p 224–232CrossRefGoogle Scholar
  33. 33.
    Y.A. Chang, D. Golberg, and J.P. Neumann, Phase Diagrams and Thermodynamic Properties of Ternary Copper-Silver Systems, J. Phys. Chem. Ref. Data, 1977, 6, p 621–673CrossRefGoogle Scholar
  34. 34.
    K.J. Röenkä, F.J.J. van Loo, and J.K. Kivilathi, Study of Diffusion Paths in the System Cu-Ag-Zn, Z. Metallkd., 1997, 88, p 9–13Google Scholar
  35. 35.
    V.T. Witusiewicz, U. Hecht, S. Rex, and F. Sommer, Partial and Integral Enthalpies of Mixing of Liquid Ag-Al-Cu and Ag-Cu-Zn Alloys, J. Alloys Compd., 2002, 337, p 189–201CrossRefGoogle Scholar
  36. 36.
    P.C. Shih and K.L. Lin, Spallation of Interfacial Ag-Au-Cu-Zn Compounds in Sn-Ag-Cu/Sn-Zn-Bi Joints During 210 °C Reflow, J. Alloys Compd., 2007, 439, p 137–142CrossRefGoogle Scholar
  37. 37.
    Ł.J. Wierzbicki, W. Malec, J. Stobrawa, B. Cwolek, and B. Juszczyk, Studies Into New, Environmentally Friendly Ag-Cu-Zn-Sn Brazing Alloys of Low Silver Content, Arch. Metall. Mater., 2011, 56, p 147–158CrossRefGoogle Scholar
  38. 38.
    S.P. Dimitrijević, Z. Anđić, Ž. Kamberović, S.B. Dimitrijević, and N. Vuković, Recycling of Silver-Plated Brass for Production of High Purity Copper and Ultrafine Silver Powder for Electric Contacts, Bulg. Chem. Commun., 2014, 46, p 814–824Google Scholar
  39. 39.
    C.B. Alcock, V.P. Itkin, and M.K. Horrigan, Vapour Pressure Equations for the Metallic Elements: 298-2500 K, Can. Metall. Q., 1984, 23, p 309–313CrossRefGoogle Scholar
  40. 40.
    A.M. Klimova, V.A. Ananichev, M. Arif, and L.N. Blinov, Investigation of the Saturated Vapor Pressure of Zinc, Selenium, and Zinc Selenide, Glass Phys. Chem, 2005, 31, p 760–762CrossRefGoogle Scholar
  41. 41.
    N. Saunders and A.P. Miodownik, CALPHAD (A Comprehensive Guide), Elsevier, London, 1998Google Scholar
  42. 42.
    H.L. Lukas, S.G. Fries, and B. Sundman, Computational Thermodynamics, Cambridge University Press, Cambridge, 2007CrossRefGoogle Scholar
  43. 43.
    W. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, and W.A. Oates, PANDAT Software with PanEngine, PanOptimizer and PanPrecipitation for Multi-component Phase Diagram Calculation and Materials Property Simulation, Calphad, 2009, 33, p 328–342CrossRefGoogle Scholar
  44. 44.
    W.J. Boettinger, U.R. Kattner, K.-W. Moon, and J.H. Perepezko, DTA and Heat-Flux DSC Measurements of Alloy Melting and Freezing, NIST Special Publication 960-15, Washington, 2006Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Stevan P. Dimitrijević
    • 1
  • Dragan Manasijević
    • 2
  • Željko Kamberović
    • 3
  • Silvana B. Dimitrijević
    • 4
  • Miodrag Mitrić
    • 5
  • Milan Gorgievski
    • 2
  • Srba Mladenović
    • 2
  1. 1.Innovation Centre of TMF BelgradeUniversity of BelgradeBelgradeSerbia
  2. 2.Technical Faculty in BorUniversity of BelgradeBorSerbia
  3. 3.TMF BelgradeUniversity of BelgradeBelgradeSerbia
  4. 4.Mining and Metallurgy Institute BorBorSerbia
  5. 5.Vinča Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia

Personalised recommendations