Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1537–1543 | Cite as

Effect of Yttrium Addition on the Microstructure and Mechanical Properties of Cu-Rich Nano-phase Strengthened Ferritic Steel

  • Hongyu Liu
  • Jibai He
  • Guoqing Luan
  • Mingpeng Ke
  • Haoyan Fang
  • Jianduo Lu


Due to the brittle problem of Cu-rich nano-phase strengthened ferritic steel (CNSFS) after air aging, the effect of Y addition in CNSFS was systemically investigated in the present work. The microstructure, tensile fracture morphology and oxide layer of the steels were surveyed by optical microscope and scanning electron microscope. Transmission electron microscope with the combination of energy-dispersive x-ray spectroscopy and selected area electron diffraction was used to analyze the morphology, size, number density, chemical compositions and crystal structure for nano-crystalline precipitates. Microstructural examinations of the nano-crystalline precipitates show that Cu-rich precipitates and Y compounds in the range of 2-10 and 50-100 nm, respectively, form in the Y-containing steel; meanwhile, the average size of nano-crystalline precipitates in Y-containing steel is larger, but the number density is lower, and the ferritic grains are refined. Furthermore, the tensile strength and ductility of Y-containing steel after air aging are improved, whereas the tensile strength is enhanced and the ductility decreased after vacuum aging. The drag effect of Y makes the oxide layer thinner and be compacted. Tensile properties of CNSFS after air aging are improved due to the refined grains, antioxidation and purification by the addition of Y.


aging Cu-rich phase nano-phase precipitation-strengthened steel tensile fracture morphology yttrium 



Natural Science Foundation of Hubei Province in China (2014CFB801) supports this work.


  1. 1.
    Z.W. Zhang, C.T. Liu, M.K. Miler, X.L. Wang, Y.R. Wen, T. Fujita, A. Hirata, M.W. Chen, G. Chen, and B.A. Chin, A Nanoscale Co-precipitation Approach for Property Enhancement of Fe-Base Alloys, Sci. Rep., 2013, 3, p p1327CrossRefGoogle Scholar
  2. 2.
    Y.R. Wen, A. Hirata, Z.W. Zhang, T. Fujita, C.T. Liu, J.H. Jiang, and M.W. Chen, Microstructure Characterization of Cu-Rich Nanoprecipitates in a Fe-2.5 Cu-1.5 Mn-4.0 Ni-1.0 Al Multicomponent Ferritic Alloy, Acta Mater., 2013, 61, p 2133–2147CrossRefGoogle Scholar
  3. 3.
    Y.R. Wen, Y.P. Li, A. Hirata, Y. Zhang, T. Fujita, T. Furuhara, C.T. Liu, A. Chiba, and M.W. Chen, Synergistic Alloying Effect on Microstructural Evolution and Mechanical Properties of Cu Precipitation Strengthened Ferritic Alloys Mechanical Properties of Cu Precipitation-Strengthened Ferritic Alloys, Acta Mater., 2013, 61, p 7726–7740CrossRefGoogle Scholar
  4. 4.
    Y.U. Heo, Y.K. Kim, J.S. Kim, and J.K. Kim, Phase Transformation of Cu Precipitates from bcc to fcc in Fe-3Si-2Cu Alloy, Acta Mater., 2013, 61, p 519–528CrossRefGoogle Scholar
  5. 5.
    J.S. Wang, M.D. Mulholland, G.B. Olson, and D.N. Seidman, Prediction of the Yield Strength of a Secondary-Hardening Steel, Acta Mater., 2013, 61, p 4939–4952CrossRefGoogle Scholar
  6. 6.
    Z.W. Zhang, C.T. Liu, Y.R. Wen, A. Hirata, S. Guo, G. Chen, M.W. Chen, and B.A. Chin, Influence of Aging and Thermomechanical Treatments on the Mechanical Properties of a Nanocluster Strengthened Ferritic Steel, Metall. Mater. Trans. A, 2012, 43, p 351–359CrossRefGoogle Scholar
  7. 7.
    Z.B. Jiao, J.H. Luan, Z.W. Zhang, M.K. Miller, W.B. Ma, and C.T. Liu, Synergistic Effects of Cu and Ni on Nanoscale Precipitation and Mechanical Properties of High Strength Steels, Acta Mater., 2013, 61, p 5996–6005CrossRefGoogle Scholar
  8. 8.
    Y.P. Xie and S.J. Zhao, The Segregation Behavior of Manganese and Silicon at the Coherent Interfaces of Copper Precipitates in Ferritic Steels, J. Nucl. Mater., 2014, 445, p 43–49CrossRefGoogle Scholar
  9. 9.
    Z.W. Zhang, C.T. Liu, X.L. Wang, M.K. Miller, D. Ma, G. Chen, J.R. Williams, and B.A. Chin, Effects of Proton Irradiation on Nanocluster Precipitation in Ferritic Steel Containing fcc Alloying Additions, Acta Mater., 2012, 60, p 3034–3046CrossRefGoogle Scholar
  10. 10.
    G. Xu, L.L. Cai, L. Feng, B.X. Zhou, W.Q. Liu, and J.A. Wang, Segregation of Atoms on the Interfaces in the RPV Model Steel Studied by APT, Acta Metall. Sin., 2012, 48, p 789–796CrossRefGoogle Scholar
  11. 11.
    J.H. Zhua and C.T. Liu, Intermediate-Temperature Mechanical Properties of Ni-Si Alloys: Oxygen Embrittlement and Its Remedies, Intermetallics, 2002, 10, p 309–316CrossRefGoogle Scholar
  12. 12.
    B.A. Pint, Experimental Observations in Support of the Dynamic-Segregation Theory to Explain the Reactive-Element Effect, Oxid. Met., 1996, 45, p 1–37CrossRefGoogle Scholar
  13. 13.
    R.M. Wang, Y.F. Han, C.Z. Li, S.W. Zhang, D.H. Ping, and M.G. Yan, Precipitations in an Yttrium-Containing Low-Expansion Superalloy, J. Mater. Sci., 1998, 33, p 5069–5077CrossRefGoogle Scholar
  14. 14.
    R.M. Wang, C.Z. Li, D.H. Ping, and M.G. Yan, Microanalytical Study of the Hexagonal Phase in an Yttrium-Containing Low Expansion Superalloy, Mater. Sci. Eng. A, 1998, 241, p 83–89CrossRefGoogle Scholar
  15. 15.
    H.B. Xu, H.Y. Liu, M. Zhao, J.Y. Lv, Y.H. Ji, and M.P. Ke, Improvement in Tensile Properties of Cu-Rich Nano-Phase Strengthened Ferritic Steel by Addition of Y, J. Iron Steel Res., 2017, 29, p 62–68Google Scholar
  16. 16.
    J.W. Fan, Q.Y. Liu, H.R. Hou, H.J. Chen, and H. Dong, The Strength of Ultra-fine Grained Ferrite Steel, Heat Treat. Met., 2003, 28, p 5–10Google Scholar
  17. 17.
    Q. Lin, B. Song, X.M. Guo, and M. Zhang, Effects of RE on Microalloying in Steel and Application Prospects, Chin. Rare Earths, 2001, 22, p 31–36Google Scholar
  18. 18.
    X.Y. Zhu, T. You, Q. Shi, Z. Yang, and Q. Lin, Effect of Cerium on Microalloying in Low Sulfur Nb-Ti-Bearing Steel, J. Rare Earth, 2005, 23, p 742–746Google Scholar
  19. 19.
    F. Forghani and M.N. Ahmadabadi, Microstructural Characteristics and Second-Phase Particles in Yttrium-Bearing Fe-10Ni-7Mn Martensitic Steel, J. Rare Earth, 2014, 32, p 326–333CrossRefGoogle Scholar
  20. 20.
    R. Robie, B. Hemingway, and J. Fisher, Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures, U.S. Geological Survey Bulletin 1452, United States Government Printing Office, Washington, 1978, p 246Google Scholar
  21. 21.
    J. Bauer and H. Nowotny, Der Dreistoff Yttrium–Bor–Kohlenstoff, Monatsh. Chem., 1971, 102, p 1129–1145CrossRefGoogle Scholar
  22. 22.
    S. Roszak and K. Balasubramanian, Structural and Thermodynamic Properties of Diyttrium Carbides Y2Cn (n) 2-8): A Theoretical Study, J. Phys. Chem. A, 1998, 102, p 6004–6009CrossRefGoogle Scholar
  23. 23.
    H. Fujikawa, T. Morimoto, Y. Nishiyama, and S.B. Newcomb, The Effects of Small Additions of Yttrium on the High-Temperature Oxidation Resistance of a Si-Containing Austenitic Stainless Steel, Oxid. Met., 2003, 59, p 23–40CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Hongyu Liu
    • 1
  • Jibai He
    • 1
  • Guoqing Luan
    • 2
  • Mingpeng Ke
    • 1
  • Haoyan Fang
    • 1
  • Jianduo Lu
    • 1
  1. 1.College of ScienceWuhan University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Institute of Iron and Steel TechnologyTechnische Universitaet Bergakademie FreibergFreibergGermany

Personalised recommendations