Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1601–1613 | Cite as

Microstructure, Phase Occurrence, and Corrosion Behavior of As-Solidified and As-Annealed Al-Pd Alloys

  • Libor Ďuriška
  • Marián Palcut
  • Martin Špoták
  • Ivona Černičková
  • Ján Gondek
  • Pavol Priputen
  • Roman Čička
  • Dušan Janičkovič
  • Jozef Janovec


In the present work, we studied the microstructure, phase constitution, and corrosion performance of Al88Pd12, Al77Pd23, Al72Pd28, and Al67Pd33 alloys (metal concentrations are given in at.%). The alloys were prepared by repeated arc melting of Al and Pd granules in argon atmosphere. The as-solidified samples were further annealed at 700 °C for 500 h. The microstructure and phase constitution of the as-solidified and as-annealed alloys were studied by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray diffraction. The alloys were found to consist of (Al), ε n (~ Al3Pd), and δ (Al3Pd2) in various fractions. The corrosion testing of the alloys was performed in aqueous NaCl (0.6 M) using a standard 3-electrode cell monitored by potentiostat. The corrosion current densities and corrosion potentials were determined by Tafel extrapolation. The corrosion potentials of the alloys were found between − 763 and − 841 mV versus Ag/AgCl. An active alloy dissolution has been observed, and it has been found that (Al) was excavated, whereas Al in ε n was de-alloyed. The effects of bulk chemical composition, phase occurrence and microstructure on the corrosion behavior are evaluated. The local nobilities of ε n and δ are discussed. Finally, the conclusions about the alloy’s corrosion resistance in saline solutions are provided.


Al-Pd alloys corrosion resistance intermetallic microstructure characterization potentiodynamic polarization 



The authors wish to thank the European Regional Development Fund (ERDF) for financial support of the project ITMS:26220120048 “Center for Development and Application of Advanced Diagnostic Methods in Processing of Metallic and Non-metallic Materials” funded within the Research & Development Operational Programme, the Grant Agency VEGA for the financial support under contracts 1/0018/15 and 1/0465/15, and the Slovak Research and Development Agency for the financial support under the contract APVV-15-0049.


  1. 1.
    J. Delahaye, J.P. Brison, C. Berger, and G. Fourcaudot, Is There a Metal/Insulator Transition in the Quasicrystalline Phase i-Al-Pd-Re?, Mater. Sci. Eng. A, 2000, 294–296, p 580–583CrossRefGoogle Scholar
  2. 2.
    J.-M. Dubois, Quasicrystals, J. Phys-Condens. Matter, 2001, 13, p 7753–7762CrossRefGoogle Scholar
  3. 3.
    K. Urban and M. Feuerbacher, Structurally Complex Alloy Phases, J. Non-Cryst. Solids, 2004, 334–335, p 143–150CrossRefGoogle Scholar
  4. 4.
    M.G. Barthes-Labrousse and J.-M. Dubois, Quasicrystals and Complex Metallic Alloys: Trends for Potential Applications, Philos. Mag., 2008, 88, p 2217–2225CrossRefGoogle Scholar
  5. 5.
    M. Boudard, Structural Themes in Approximant and Decagonal Quasicrystalline Phases in Al based Alloys, J. Alloys Comp., 2010, 495, p 365–371CrossRefGoogle Scholar
  6. 6.
    J.-M. Dubois and E. Belin-Ferré, Ed., Complex Metallic Alloys: Fundamentals and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010Google Scholar
  7. 7.
    J.-M. Dubois, Properties- and Applications of Quasicrystals and Complex Metallic Alloys, Chem. Soc. Rev., 2012, 41(20), p 6760–6777CrossRefGoogle Scholar
  8. 8.
    J.-M. Dubois, Useful Quasicrystals, World Scientific Publishing, Singapore, 2005CrossRefGoogle Scholar
  9. 9.
    J. Dolinšek, M. Komelj, P. Jeglič, S. Vrtnik, D. Stanić, P. Popčević, J. Ivkov, A. Smontara, Z. Jagličić, P. Gille, and Y. Grin, Anisotropic Magnetic and Transport Properties of Orthorhombic Al13Co4, Phys. Rev. B, 2009, 79, p 184201-1–184201-12Google Scholar
  10. 10.
    S. Jazbec, J. Dolinšek, The Properties and Applications of Quasicrystals. (University of Ljubljana, 2009),
  11. 11.
    M. Krajčí and J. Hafner, Complex Intermetallic Compounds as Selective Hydrogenation Catalysts—A Case Study for the (1 0 0) Surface of Al13Co4, J. Catal., 2011, 278, p 200–207CrossRefGoogle Scholar
  12. 12.
    S.A. Villaseca, J. Ledieu, L.N. Serkovic Loli, M.-C. de Weerd, P. Gille, V. Fournée, J.-M. Dubois, and É. Gaudry, Structural Investigation of the (001) Surface of the Al9Co2 Complex Metallic Alloy, J. Phys. Chem. C, 2011, 115, p 14922–14932CrossRefGoogle Scholar
  13. 13.
    R. Addou, A.K. Shukla, S. Alarcón Villaseca, É. Gaudry, Th. Deniozou, M. Heggen, M. Feuerbacher, R. Widmer, O. Gröning, V. Fournée, J.-M. Dubois, and J. Ledieu, Lead Adsorption on the Al13Co4(100) Surface: Heterogeneous Nucleation and Pseudomorphic Growth, New J. Phys., 2011, 13, p 103011CrossRefGoogle Scholar
  14. 14.
    C.J. Jenks and P.A. Thiel, Comments on Quasicrystals and Their Potential Use as Catalysts, J. Mol. Catal. A Chem., 1998, 131, p 301–306CrossRefGoogle Scholar
  15. 15.
    T. Eisenhammer, Quasicrystal Films: Numerical Optimization as a Solar Selective Absorber, Thin Solid Films, 1995, 270, p 1–5CrossRefGoogle Scholar
  16. 16.
    A.P. Tsai, K. Aoki, A. Inoue, and T. Masumoto, Synthesis of Stable Quasicrystalline Particle-dispersed Al base Composite Alloys, J. Mater. Res., 1993, 8, p 5–7CrossRefGoogle Scholar
  17. 17.
    D.D. Macdonald, The Point Defect Model for the Passive State, J. Electrochem. Soc., 1992, 139(12), p 3434–3449CrossRefGoogle Scholar
  18. 18.
    J.O’.M. Bockris and L.V. Minevski, On the Mechanism of the Passivity of Aluminium and Aluminium Alloys, J. Electroanal. Chem., 1993, 349, p 375–414CrossRefGoogle Scholar
  19. 19.
    G.S. Frankel, Pitting Corrosion of Metals: A Review of the Critical Factors, J. Electrochem. Soc., 1998, 145, p 2186–2198CrossRefGoogle Scholar
  20. 20.
    Z. Szklarska-Smialowska, Pitting Corrosion of Aluminium, Corros. Sci., 1999, 41, p 1743–1767CrossRefGoogle Scholar
  21. 21.
    L. Speckert and G.T. Burstein, Combined Anodic/Cathodic Transient Currents within Nucleating Pits on Al-Fe Alloy Surfaces, Corros. Sci., 2011, 53, p 534–539CrossRefGoogle Scholar
  22. 22.
    Ch. Mi, N. Lakhera, D.A. Kouris, and D.A. Buttry, Repassivation Behaviour of Stressed Aluminium Electrodes in Aqueous Chloride Solutions, Corros. Sci., 2012, 54, p 10–16CrossRefGoogle Scholar
  23. 23.
    B.A. Shaw, G.D. Davis, T.L. Fritz, B.J. Rees, and W.C. Moshier, The Influence of Tungsten Alloying Additions on the Passivity of Aluminium, J. Electrochem. Soc., 1991, 138, p 3288–3295CrossRefGoogle Scholar
  24. 24.
    G.D. Davis, B.A. Shaw, B.J. Rees, and M. Ferry, Mechanisms of Passivity of Nonequilibrium Al-W Alloys, J. Electrochem. Soc., 1993, 140, p 951–959CrossRefGoogle Scholar
  25. 25.
    J.O’.M. Bockris and Y. Kang, The Protectivity of Aluminium and Its Alloys with Transition Metals, J. Solid State Electrochem., 1997, 1, p 17–35CrossRefGoogle Scholar
  26. 26.
    Y. Massiani, S.A. Yaazza, J.P. Croussier, and J.-M. Dubois, Electrochemical Behaviour of Quasicrystalline Alloys in Corrosive Solutions, J. Non-Cryst. Solids, 1993, 159, p 92–100CrossRefGoogle Scholar
  27. 27.
    A. Rüdiger and U. Köster, Corrosion of Al-Cu-Fe Quasicrystals and Related Crystalline Phases, J. Non-Cryst. Solids, 1999, 250–252, p 898–902CrossRefGoogle Scholar
  28. 28.
    E. Huttunen-Saarivirta and T. Tiainen, Corrosion Behaviour of Al-Cu-Fe Alloys Containing a Quasicrystalline Phase, Mater. Chem. Phys., 2004, 85, p 383–395CrossRefGoogle Scholar
  29. 29.
    M. Liu, P. Schmutz, S. Zanna, A. Seyeux, H. Ardelean, G. Song, A. Atrens, and P. Marcus, Electrochemical Reactivity, Surface Composition and Corrosion Mechanisms of the Complex Metallic Alloy Al3Mg2, Corros. Sci., 2010, 52, p 562–578CrossRefGoogle Scholar
  30. 30.
    E. Ura-Binczyk, N. Homazava, A. Ulrich, R. Hauert, M. Lewandowska, K.J. Kurzydlowski, and P. Schmutz, Passivation of Al-Cr-Fe and Al-Cu-Fe-Cr Complex Metallic Alloys in 1M H2SO4 and 1M NaOH Solutions, Corros. Sci., 2011, 53, p 1825–1837CrossRefGoogle Scholar
  31. 31.
    V. Kalai Vani, O.J. Kwon, S.M. Hong, and E. Fleury, Synthesis of Porous Cu from Al-Cu-Co Decagonal Quasicrystalline Alloys, Philos. Mag., 2011, 91, p 2920–2928CrossRefGoogle Scholar
  32. 32.
    A. Beni, N. Ott, E. Ura-Bińczyk, M. Rasinski, B. Bauer, P. Gille, A. Ulrich, and P. Schmutz, Passivation and Localised Corrosion Susceptibility of New Al-Cr-Fe Complex Metallic Alloys in Acidic NaCl Electrolytes, Electrochim. Acta, 2011, 56, p 10524–10532CrossRefGoogle Scholar
  33. 33.
    N.R. Tailleart, R. Huang, T. Aburada, D.J. Horton, and J.R. Scully, Effect of Thermally Induced Relaxation on Passivity and Corrosion of an Amorphous Al-Co-Ce Alloy, Corros. Sci., 2012, 59, p 238–248CrossRefGoogle Scholar
  34. 34.
    A. Lekatou, A.K. Sfikas, A.E. Karantzalis, and D. Sioulas, Microstructure and Corrosion Performance of Al-32%Co Alloys, Corros. Sci., 2012, 63, p 193–209CrossRefGoogle Scholar
  35. 35.
    B. Liang, G. Wang, B. Zhang, and X. Zhang, Corrosion Resistance of Al-Cu-Fe Alloy Powder Coated with Silica Using an Ultrasound-assisted Sol–Gel Method, Corros. Sci., 2013, 73, p 292–299CrossRefGoogle Scholar
  36. 36.
    M. Palcut, P. Priputen, M. Kusý, and J. Janovec, Corrosion Behaviour of Al-29at.%Co Alloy in Aqueous NaCl, Corros. Sci., 2013, 75, p 461–466CrossRefGoogle Scholar
  37. 37.
    M. Palcut, P. Priputen, K. Šalgó, and J. Janovec, Phase Constitution and Corrosion Resistance of Al-Co Alloys, Mater. Chem. Phys., 2015, 166, p 95–104CrossRefGoogle Scholar
  38. 38.
    A. Lekatou, A.K. Sfikas, C. Petsa, and A.E. Karantzalis, Al-Co Alloys Prepared by Vacuum Arc Melting: Correlating Microstructure Evolution and Aqueous Corrosion Behavior with Co Content, Metals, 2016, 6(3), p 46CrossRefGoogle Scholar
  39. 39.
    V. Johánek, I. Stará, and V. Matolín, Role of Pd-Al Bimetallic Interaction in CO Adsorption and Catalytic Properties of bulk PdAl Alloy: XPS, ISS, TDS, and SIMS Study, Surf. Sci., 2002, 507–510, p 92–98CrossRefGoogle Scholar
  40. 40.
    M. Yurechko, A. Fattah, T. Velikanova, and B. Gushko, A Contribution to the Al-Pd Phase Diagram, J. Alloys. Comp., 2001, 329, p 173–181CrossRefGoogle Scholar
  41. 41.
    H. Okamoto, Al-Pd (Aluminium–Palladium), J. Phase Equilib., 2003, 24, p 196CrossRefGoogle Scholar
  42. 42.
    B. Grushko, Again Regarding the Al-Pd Phase Diagram, J. Alloys Comp., 2013, 557, p 102–111CrossRefGoogle Scholar
  43. 43.
    A. Smontara, I. Smiljanić, A. Bilušić, B. Grushko, S. Balanetskyy, Z. Jagličić, S. Vrtnik, and J. Dolinšek, Complex ɛ-phases in the Al-Pd-Transition–Metal Systems: Towards a Combination of an Electrical Conductor with a Thermal Insulator, J. Alloys Comp., 2008, 450(1–2), p 92–102CrossRefGoogle Scholar
  44. 44.
    Q. Zhang and Z. Zhang, On the Electrochemical Dealloying of Al-based Alloys in a NaCl Aqueous Solution, Phys. Chem. Chem. Phys., 2010, 12, p 1453–1472CrossRefGoogle Scholar
  45. 45.
    M. Palcut, L. Ďuriška, M. Špoták, M. Vrbovský, Ž. Gerhátová, I. Černičková, and J. Janovec, Electrochemical corrosion of Al-Pd alloys in HCl and NaOH solutions, J. Min. Metall. Sect. B Metall., 2017, 53(3), p 333–340CrossRefGoogle Scholar
  46. 46.
    J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, Evolution of Nanoporosity in Dealloying, Nature, 2001, 410, p 450–453CrossRefGoogle Scholar
  47. 47.
    Z. Zhang, Y. Wang, Z. Qi, W. Zhang, J. Qin, and J. Frenzel, Generalized Fabrication of Nanoporous Metals (Au, Pd, Pt, Ag, and Cu) Through Chemical Dealloying, J. Phys. Chem. C, 2009, 113, p 12629–12636CrossRefGoogle Scholar
  48. 48.
    X. Wang, W. Wang, Z. Qi, Ch Zhao, H. Ji, and Z. Zhang, High Catalytic Activity of Ultrafine Nanoporous Palladium for Electro-oxidation of Methanol, Ethanol, and Formic Acid, Electrochem. Commun., 2009, 11, p 1896–1899CrossRefGoogle Scholar
  49. 49.
    J. Zhang, Q. Bai, and Z. Zhang, Dealloying-driven Nanoporous Palladium with Superior Electrochemical Actuation Performance, Nanoscale, 2016, 8, p 7287–7295CrossRefGoogle Scholar
  50. 50.
    Z. Zhang and W. Ying, Design and fabrication of dealloying-driven nanoporous metallic electrocatalyst, Electrocatalysts for Low Temperature Fuel Cells: Fundamentals and Recent Trends, T. Maiyalagan and V.S. Saji, Ed., Wiley-VCH, Weinheim, 2017, p 533–555 CrossRefGoogle Scholar
  51. 51.
    J. Zhang, Y. Wang, C. Si, Q. Bai, W. Ma, H. Gao, and Z. Zhang, Electrochemical Actuation Behaviors of Bulk Nanoporous Palladium in Acid and Alkaline Solutions, Electrochim. Acta, 2016, 220, p 91–97CrossRefGoogle Scholar
  52. 52.
    S. Balanetskyy, B. Grushko, T.Ya. Velikanova, and K. Urban, An Investigation of the Al-Pd-Fe Phase Diagram Between 50 and 100 at.% Al: Phase Equilibria at 750 °C, J. Alloys Comp., 2004, 376, p 158–164CrossRefGoogle Scholar
  53. 53.
    I. Černičková, P. Švec, S. Watanabe, Ľ. Čaplovič, M. Mihalkovič, V. Kolesár, P. Priputen, J. Bednarčík, D. Janičkovič, and J. Janovec, Fine Structure of Phases of ε-family in Al73.8Pd11.9Co14.3 Alloy, J. Alloys Comp., 2014, 609, p 73–79CrossRefGoogle Scholar
  54. 54.
    R.G. Kelly, J.R. Scully, D.W. Shoesmith, and R.G. Buchheit, Electrochemical Techniques in Corrosion Science and Engineering, Marcel Dekker Inc, New York, 2003Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Faculty of Materials Science and Technology in TrnavaSlovak University of Technology in BratislavaTrnavaSlovak Republic
  2. 2.Institute of PhysicsSlovak Academy of SciencesBratislavaSlovak Republic
  3. 3.Slovak University of Technology in BratislavaBratislavaSlovak Republic

Personalised recommendations