Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1917–1926 | Cite as

Effect of Localized Corrosion on Fatigue–Crack Growth in 2524-T3 and 2198-T851 Aluminum Alloys Used as Aircraft Materials

  • J. A. Moreto
  • E. E. Broday
  • L. S. Rossino
  • J. C. S. Fernandes
  • W. W. Bose Filho


Corrosion and fatigue of aluminum alloys are major issues for the in-service life assessment of aircraft structures and for the management of aging air fleets. The aim of this work was to evaluate the effect of localized corrosion on fatigue crack growth (FCG) resistance of the AA2198-T851 Al-Li alloy (Solution Heat Treated, Cold Worked, and Artificially Aged), comparing it with the FCG resistance of AA2524-T3 (Solution Heat Treated and Cold Worked), considering the effect of seawater fog environment. Before fatigue tests, the corrosion behavior of 2198-T851 and 2524-T3 aluminum alloys was verified using open circuit potential and potentiodynamic polarization techniques. Fatigue in air and corrosion fatigue tests were performed applying a stress ratio (R) of 0.1, 15 Hz (air) and 0.1 Hz (seawater fog) frequencies, using a sinusoidal waveform in all cases. The results showed that the localized characteristics of the 2198-T851 and 2524-T3 aluminum alloys are essentially related to the existence of intermetallic compounds, which, due to their different nature, may be cathodic or anodic in relation to the aluminum matrix. The corrosive medium has affected the FCG rate of both aluminum alloys, in a quite similar way.

Graphical Abstract


Al alloys corrosion–fatigue seawater fog environment 2XXX series Al alloys 



The authors gratefully acknowledge the Department of Materials Engineering, University of São Paulo—USP for providing the laboratory facilities and the Brazilian research funding agencies CNPq (Processes: 303684/2015-1 and 402142/2016-0) and CAPES (Process: BEX4936/10-8) for their financial support.

The authors would like to express their thanks to Professor Fernando Quites, in memorian, for the contributions made in this work.


  1. 1.
    G.E. Totten and D.S. Mackenzie, Handbook of Physical Metallurgy and Process, CRC Press, New York, 2003Google Scholar
  2. 2.
    J.A. Moreto, F.A. Paschoal Júnior, C.I.S. Maciel, L.H.C. Bonazzi, J.F. Leoneli Júnior, C.O.F.T. Ruchert, and W.W. Bose Filho, Environmentally-Assisted Fatigue Crack Growth in AA7050-T73511 Al Alloy and AA2050-T84 Al-Cu-Li Alloy, Mater. Res., 2015, 18(6), p 1291–1297CrossRefGoogle Scholar
  3. 3.
    ASM International, ASM SPECIALTY Handbook: Aluminum and Aluminum Alloys in Aluminum-Lithium Alloys, Ohio, ASM International, 1993, p 121Google Scholar
  4. 4.
    B. Decreus, A. Deschams, P. Donnadieu, in Understanding the Mechanical Properties of 2198 Al-Li-Cu Alloy in Relation with the Intra-Granular and Inter-Granular Precipitate Microstructure. International Conference on the Strength of Materials. (Book Series: Journal of Physics Conference Series, v.240, Aug. 2009, 2009).Google Scholar
  5. 5.
    T. Warner, Recently Developed Aluminium Solutions for Aerospace Applications, Mater. Sci. Forum, 2006, 519–521, p 1271–1278CrossRefGoogle Scholar
  6. 6.
    O.C. Gamboni, J.A. Moreto, L.H.C. Bonazzi, C.O.F.T. Ruchert, and W.W. Bose Filho, Effect of Salt-Water Fog on Fatigue Crack Nucleation of Al and Al-Li Alloys, Mater. Res., 2013, 17(1), p 250–254CrossRefGoogle Scholar
  7. 7.
    Z.Q. Zheng, B. Cai, T. Zhai, and S.C. Li, The Behavior of Fatigue Crack Initiation and Propagation in AA2524-T34 Alloy, Mater. Sci. Eng. A, 2011, 528, p 2017–2022CrossRefGoogle Scholar
  8. 8.
    T.L. Anderson, Fracture Mechanics Fundamentals and Applications, 2nd ed., CRC Press, Boca Raton, 1995Google Scholar
  9. 9.
    American Society for Metals, Metals Handbook, 9th ed., ASM International, Ohio, 1990Google Scholar
  10. 10.
    J.A. Moreto, C.E.B. Marino, W.W. Bose Filho, L.A. Rocha, and J.S.C. Fernandes, SVET, SKP and EIS Study of the Corrosion Behaviour of High Strength Al and Al-Li Alloys used in Aircraft Fabrication, Corros. Sci., 2014, 84, p 30–41CrossRefGoogle Scholar
  11. 11.
    American Society for Testing and Materials, ASTM E8 M: Standard Test Methods for Tension Testing of Metallic Materials, American Society for Testing and Materials, Philadelphia, 2000Google Scholar
  12. 12.
    American Society for Testing and Materials, ASTM E647: Standard Test Method for Measurement of Fatigue Crack Growth Rates, American Society for Testing and Materials, Philadelphia, 2008Google Scholar
  13. 13.
    ASTM, ASTM B909-00: Standard Guide for Plane Strain Fracture Toughness Testing of Non-stress Relieved Aluminum Products, Annual Book Of Standards, Section 2—Nonferrous Metal Products, vol. 02.02, Aluminum and Magnesium Alloys, ASTM, West Conshohocken, 2001, p 614–617Google Scholar
  14. 14.
    S.J. Hudak, Jr., A. Saxena, R.J. Bucci, and R.C. Malcolm, Development of Standard Methods of Testing and Analyzing Fatigue Crack Growth Rate Data—Final Report, AFML TR 78-40, Air Force Materials Laboratory, Wright Patterson Air Force Base, Dayton, 1978Google Scholar
  15. 15.
    P. Cavaliere and A. Santis, Effect of Anisotropy on Fatigue Properties of AA2198 Al-Li Plates Joined by Friction Stir Welding, Metall. Sci. Technol., 2008, 26(2), p 21–130Google Scholar
  16. 16.
    R.C. Souza, in Efeito do estiramento no comportamento em fadiga da liga de Al 2524-T3. Congresso Brasileiro de Ciência e Engenharia de Materiais (IPEN, Foz do Iguaçu, 2006).Google Scholar
  17. 17.
    R.P. Wei, R.P. Gangloff, in Fracture Mechanisms: Perspectives and Directions (Twentieth Symposium), ASTM STP 1020, ed. by R. P Wei, R. P Gangloff (American Society for Testing Materials, Philadelphia, 1989), pp. 233–264.Google Scholar
  18. 18.
    S. Suresh, Fatigue of Materials, Cambridge University Press, Cambridge, 1991Google Scholar
  19. 19.
    N.E. Dowling, Mechanical Behavior of Materials, Prentice Hall Inc., Englewood Cliffs, 1993Google Scholar
  20. 20.
    Y.Q. Chen, S.P. Pan, M.Z. Zhou, D.Q. Yi, D.Z. Xu, and Y.F. Xu, Effects of Inclusions, Grain Boundaries and Grain Orientations on the Fatigue Crack Initiation and of 2524-T3 Al ally, Mater. Sci. Eng. A, 2013, 580, p 150–158CrossRefGoogle Scholar
  21. 21.
    A. Tzamtzis and A.T. Kermanidis, Improvement of Fatigue Crack Growth Resistance by Controlled Over Aging in 2024-T3 Aluminium Alloy, Fatigue Fract. Eng. Mater. Struct., 2014, 00, p 1–13Google Scholar
  22. 22.
    K. Komai, Corrosion fatigue, Comprehensive Structural Integrity: Fracture of Materials from Nano to Macro, R.O. Ritchie and Y. Murakami, Ed., Elsevier, Amsterdam, 2003, p 345–358CrossRefGoogle Scholar
  23. 23.
    Xu Yue, Xiaojing Wang, Zhaotong Yan, and Jiaxue Li, Corrosion Properties of Light-Weight and High-Strength 2195 Al-Li alloy, Chin. J. Aeronaut., 2011, 24, p 681–686CrossRefGoogle Scholar
  24. 24.
    J.F. Li, Simulation on Function Mechanism of T1 (Al2CuLi) Precipitate in Localized Corrosion of Al-Cu-Li alloys, Trans. Nonferrous Met. Soc. China, 2006, 16, p 1268–1273CrossRefGoogle Scholar
  25. 25.
    J.A. Moreto. (2012) Estudo da corrosão e corrosão-fadiga em ligas de Al e Al - Li de alta resistência para aplicação aeronáutica. Tese (Doutorado em Ciência e Engenharia de Materiais) - Ciência e Engenharia de Materiais, Universidade de São Paulo, São Carlos, 2012.Google Scholar
  26. 26.
    S.C. Ferreira, L.A. Rocha, E. Ariza, P.D. Sequeira, Y. Watanabe, and J.C.S. Fernandes, Corrosion Behaviour of Al/Al3Ti and Al/Al3Zr Functionally Graded Materials Produced by Centrifugal Solid-Particle Method: Influence of the Intermetallics Volume fraction, Corros. Sci., 2011, 53, p 2058–2065CrossRefGoogle Scholar
  27. 27.
    A. Barbucci, G. Bruzzone, M. Delucchi, M. Panizza, and G. Cerisola, Breakdown of Passivity of Aluminium Alloys by Intermetallic Phases in Neutral Chloride Solution, Intermetallics, 2000, 8(3), p 305–312CrossRefGoogle Scholar
  28. 28.
    C.-K. Lina and S.-T. Yanga, Corrosion Fatigue Behavior of 7050 Aluminum Alloys in Different Tempers, Eng. Fract. Mech., 1998, 59(6), p 779–795CrossRefGoogle Scholar
  29. 29.
    N.D. Alexopoulos, E. Migklis, and A. Stylianos, Fatigue Behavior of the Aeronautic Al-Li (2198) Aluminum Alloy Under Constant Amplitude Loading, Int. J. Fatigue, 2013, 56, p 95–105CrossRefGoogle Scholar
  30. 30.
    J. Xiong, M. Liu, Modelling Crack Propagation in Aluminium-Alloys 2524-T3 and 7050-T7452 Subjected to Fatigue Loading at Low Temperature. Preprints 2016, 2016100066.Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • J. A. Moreto
    • 1
    • 2
  • E. E. Broday
    • 3
  • L. S. Rossino
    • 4
    • 5
  • J. C. S. Fernandes
    • 6
    • 7
  • W. W. Bose Filho
    • 2
  1. 1.Institute of Exact Sciences, Naturals and EducationFederal University of Triângulo Mineiro (UFTM)UberabaBrazil
  2. 2.Department of Materials EngineeringUniversity of São PauloSão CarlosBrazil
  3. 3.Department of Production EngineeringFederal University of Technology of Paraná (UTFPR)Ponta GrossaBrazil
  4. 4.Sorocaba Technological College (FATEC)SorocabaBrazil
  5. 5.Federal University of São Carlos - UFSCarSorocabaBrazil
  6. 6.Department of Chemical Engineering, Instituto Superior TécnicoUniversity of LisbonLisbonPortugal
  7. 7.CQE - Centro de Química EstruturalLisbonPortugal

Personalised recommendations