Skip to main content
Log in

Characterization of Microstructure, Mechanical Properties and Formability of Cryorolled AA5083 Alloy Sheets

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, microstructure, mechanical properties and formability of cryorolled and annealed AA5083 alloy sheets have been characterized and a comparison has been made with cold rolled and annealed sheets. Five-millimeter-thick sheets of this alloy were cryorolled in multiple passes to a final thickness of 1 mm (80% reduction with a true strain of 1.6). Effect of annealing time and temperature on hardness has been studied, and it has been found that a short annealing at 275 °C for 15 min after cryorolling would yield a good combination of strength and ductility. Microstructural investigations showed that the cryorolled and short annealed samples possess bimodal grain structure which is responsible for better mechanical properties than cold rolled sheets. From the experimentally determined forming limit diagrams, the limit strains of cryorolled sheets have been found to be almost equal to conventional cold rolled and annealed sheets in all modes of deformation. No major differences have been found in strain distribution also. This work clearly demonstrates that cryorolling of AA5083 alloy sheets followed by a short annealing with bimodal grain structure can be used for sheet metal forming applications with higher strength and toughness than conventional sheets without any reduction in formability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. I.J. Polmear, Light Alloys, Metallurgy of the Light Metals, 2nd ed., Edward Arnold, Melbourne, 1989, p 101–111

    Google Scholar 

  2. I.R. Dover and J.D. Embury, The Influence of Microstructural Features on the Formability of Aluminium Alloys, Mater. Forum, 1986, 9(4), p 188–201

    Google Scholar 

  3. J. Yan, N.M. Heckman, L. Velasco, and A.M. Hodge, Improve Sensitization and Corrosion Resistance of an Al-Mg Alloy by Optimization of Grain Boundaries, Sci. Rep., 2016, https://doi.org/10.1038/srep26870

    Google Scholar 

  4. H.L. Yu, C. Lu, A.K. Tieu, H.J. Li, A. Godbole, and S.H. Zhang, Special Rolling Techniques for Improvement of Mechanical Properties of Ultrafine-Grained Metal Sheets: A Review, Adv. Eng. Mater., 2015, 18, p 754–769

    Article  Google Scholar 

  5. Y. Wang, M. Chen, F. Zhou, and E. Ma, High Tensile Ductility in a Nanostructured Metal, Nature, 2002, 419(6910), p 912–915

    Article  Google Scholar 

  6. D. Singh, P. Nageswararao, and R. Jayaganthan, Microstructural Studies of Al 5083 Alloy Deformed through Cryorolling, Adv. Mater. Res., 2012, 585, p 376–380. https://doi.org/10.4028/www.scientific.net/AMR.585.376

    Article  Google Scholar 

  7. S. Cheng, Y.H. Zhao, Y.T. Zhu, and E. Ma, Optimizing the Strength and Ductility of Fine Structured 2024 Al Alloy by Nano-Precipitation, Acta Mater., 2007, 55(17), p 5822–5832

    Article  Google Scholar 

  8. D.K.K. Yang, P. Cizek, D. Fabijanic, J.T.T. Wang, and P.D.D. Hodgson, Work Hardening in Ultrafine-Grained Titanium: Multilayering and Grading, Acta Mater., 2013, 61(8), p 2840–2852

    Article  Google Scholar 

  9. A. Dhal, S.K. Panigrahi, and M.S. Shunmugam, Insight into the Microstructural Evolution During Cryo-Severe Plastic Deformation and Post-Deformation Annealing of Aluminum and Its Alloys, J. Alloy. Compd., 2017, 726, p 1205–1219

    Article  Google Scholar 

  10. S.K. Panigrahi and R. Jayaganthan, Influence of Solutes and Second Phase Particles on Work Hardening Behavior of Al 6063 Alloy Processed by Cryorolling, Mater. Sci. Eng., A, 2011, 528(7–8), p 3147–3160

    Article  Google Scholar 

  11. P.N. Rao, D. Singh, and R. Jayaganthan, Effect of Annealing on Microstructure and Mechanical Properties of Al 6061 Alloy Processed by Cryorolling, Mater. Sci. Technol., 2013, 29(1), p 76–82. https://doi.org/10.1179/1743284712Y.0000000041

    Article  Google Scholar 

  12. S.K. Panigrahi and R. Jayaganthan, Effect of Annealing on Precipitation, Microstructural Stability, and Mechanical Properties of Cryorolled Al 6063 Alloy, J. Mater. Sci., 2010, 45(20), p 5624–5636

    Article  Google Scholar 

  13. L.W. Quan, W.N. Mu, L. Kang, X. Ma, P. Han, and M.L. Huang, The Effect of Cryorolling on the Microstructure of Al-Cu-Mg Alloy, Mater. Sci. Forum, 2016, 877, p 188–193. https://doi.org/10.4028/www.scientific.net/MSF.877.188

    Article  Google Scholar 

  14. D. Singh, P.N. Rao, and R. Jayaganthan, Effect of Deformation Temperature on Mechanical Properties of Ultrafine Grained Al-Mg Alloys Processed by Rolling, Mater. Des., 2013, 50, p 646–655. https://doi.org/10.1016/j.matdes.2013.02.068

    Article  Google Scholar 

  15. S.K. Panigrahi and R. Jayaganthan, A Study on the Mechanical Properties of Cryorolled Al-Mg-Si Alloy, Mater. Sci. Eng., A, 2008, 480(1–2), p 299–305

    Article  Google Scholar 

  16. H. Yu, A.K. Tieu, C. Lu, X. Liu, M. Liu, A. Godbole, C. Kong, and Q. Qin, A New Insight into Ductile Fracture of Ultrafine-Grained Al-Mg Alloys, Sci. Rep., 2015, 5, p 9568

    Article  Google Scholar 

  17. H. Yu, H. Wang, C. Lu, A.K. Tieu, H. Li, A. Godbole, X. Liu, C. Kong, and X. Zhao, Microstructure Evolution of Accumulative Roll Bonding Processed Pure Aluminum during Cryorolling, J. Mater. Res., 2016, 31(6), p 797–805

    Article  Google Scholar 

  18. Y.B. Lee, D.H. Shin, K.-T. Park, and W.J. Nam, Effect of Annealing Temperature on Microstructures and Mechanical Properties of a 5083 Al Alloy Deformed at Cryogenic Temperature, Scripta Mater., 2004, 51(4), p 355–359

    Article  Google Scholar 

  19. D. Singh, P. Nageswara Rao, and R. Jayaganthan, Microstructures and Impact Toughness Behavior of Al 5083 Alloy Processed by Cryorolling and Afterwards Annealing, Int. J. Miner. Metall. Mater., 2013, 20(8), p 759–769

    Article  Google Scholar 

  20. T. Shanmugasundaram, B.S. Murty, and V. Subramanya Sarma, Development of Ultrafine Grained High Strength Al-Cu Alloy by Cryorolling, Scripta Mater., 2006, 54(12), p 2013–2017

    Article  Google Scholar 

  21. P.N. Rao, S.K. Panigrahi, and R. Jayaganthan, Effect of Annealing and Aging Treatment on Mechanical Properties of Ultrafine Grained Al 6061 Alloy, Mater. Sci. Technol., 2010, 26(3), p 371–374. https://doi.org/10.1179/174328409X443227

    Article  Google Scholar 

  22. P.N. Rao, A. Kaurwar, D. Singh, and R. Jayaganthan, Enhancement in Strength and Ductility of Al-Mg-Si Alloy by Cryorolling Followed by Warm Rolling, Proc. Eng., 2014, 75, p 123–128

    Article  Google Scholar 

  23. P. Das, R. Jayaganthan, and I.V. Singh, Tensile and Impact-Toughness Behaviour of Cryorolled Al 7075 Alloy, Mater. Des., 2011, 32, p 1298–1305

    Article  Google Scholar 

  24. Y. Shi, M. Li, D. Guo, T. Ma, Z. Zhang, X. Li, G. Zhang, and X. Zhang, Extraordinary Toughening by Cryorolling in Zr, Adv. Eng. Mater., 2014, 16(2), p 167–170

    Article  Google Scholar 

  25. B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, and M.X. Huang, High Dislocation Density-Induced Large Ductility in Deformed and Partitioned Steels, Science, 2017, 357(6355), p 1029–1032

    Article  Google Scholar 

  26. I.A. Ovid’Ko and T.G. Langdon, Enhanced Ductility of Nanocrystalline and Ultrafine-Grained Metals, Rev. Adv. Mater. Sci., 2012, 30(2), p 103–111

    Google Scholar 

  27. R.O. Ritchie, The Conflicts between Strength and Toughness, Nat. Mater. Nat. Res., 2011, 10(11), p 817–822

    Article  Google Scholar 

  28. Y. Wei, Y. Li, L. Zhu, Y. Liu, X. Lei, G. Wang, Y. Wu, Z. Mi, J. Liu, and H. Wang, Evading the Strength–ductility Trade-off Dilemma in Steel through Gradient Hierarchical Nanotwins, Nat. Commun., 2014, 5, p 3580

    Google Scholar 

  29. L. Lu, M.L. Sui, and K. Lu, Superplastic Extensibility of Nanocrystalline Copper at Room Temperature, Science, 2000, 287(5457), p 1463–1466

    Article  Google Scholar 

  30. K. Lu, Making Strong Nanomaterials Ductile with Gradients, Science, 2014, 345(6203), p 1455–1456

    Article  Google Scholar 

  31. V.A. Pozdnyakov, Ductility of Nanocrystalline Materials with a Bimodal Grain Structure, Tech. Phys. Lett., 2007, 33(12), p 1004–1006. https://doi.org/10.1134/s1063785007120061

    Article  Google Scholar 

  32. M.S. Oskooie, H. Asgharzadeh, and H.S. Kim, Microstructure, Plastic Deformation and Strengthening Mechanisms of an Al–Mg–Si Alloy with a Bimodal Grain Structure, J. Alloy. Compd., 2015, 632, p 540–548

    Article  Google Scholar 

  33. K. Krishna, S. Vigneshwaran, K.C. Sekhar, S.S.R. Akella, K. Sivaprasad, R. Narayanasamy, and K. Venkateswarlu, Mechanical Behavior and Void Coalescence Analysis of Cryorolled AA8090 Alloy, Int. J. Adv. Manuf. Technol., 2016, 93, p 1–7

    Article  Google Scholar 

  34. N. Rangaraju, T. Raghuram, B.V. Krishna, K.P. Rao, and P. Venugopal, Effect of Cryo-Rolling and Annealing on Microstructure and Properties of Commercially Pure Aluminium, Mater. Sci. Eng., A, 2005, 398(1), p 246–251

    Article  Google Scholar 

  35. S.H. Choi, J.H. Cho, K.H. Oh, F. Barlat, K. Chung, and J.W. Kwon, Prediction of Yield Surfaces of Textured Sheet Metals, Metall. Mater. Trans. A, 1999, 30(2), p 377–386

    Article  Google Scholar 

  36. K.K. Mathur, P.R. Dawson, and U.F. Kocks, On Modeling Anisotropy in Deformation Processes Involving Textured Polycrystals with Distorted Grain Shape, Mech. Mater., 1990, 10(3), p 183–202

    Article  Google Scholar 

  37. A.S. Taylor, M. Weiss, T. Hilditch, P.D. Hodgson, and N. Stanford, Cryo-Rolling and Formability of 2024 Aluminium, Mater. Sci. Forum, 2013, 765, p 434–438. https://doi.org/10.4028/www.scientific.net/MSF.765.434

    Article  Google Scholar 

  38. K.C. Sekhar, R. Narayanasamy, and K. Velmanirajan, Experimental Investigations on Microstructure and Formability of Cryorolled AA 5052 Sheets, Mater. Des., 2014, 53, p 1064–1070

    Article  Google Scholar 

  39. W.F. Hosford and R.M. Caddell, Metal Forming: Mechanics and Metallurgy, Cambridge University Press, New York, 2011, p 207–216

    Book  Google Scholar 

  40. A.K. Ghosh and S.S. Hecker, Failure in Thin Sheets Stretched over Rigid Punches, Metall. Trans. A, 1975, 6(5), p 1065–1074. https://doi.org/10.1007/BF02661361

    Article  Google Scholar 

  41. K. Nakazima, T. Kikuma, and K. Hasuka, Study on the Formability of Steel Sheets, Yawata Tech. Rep., 1968, 264, p 8517–8530

    Google Scholar 

  42. G.K. Williamson and W.H. Hall, X-Ray Line Broadening from Filed Aluminium and Wolfram, Acta Metall., 1953, 1(1), p 22–31

    Article  Google Scholar 

  43. H. Adachi, Y. Miyajima, M. Sato, and N. Tsuji, Evaluation of Dislocation Density for 1100 Aluminum with Different Grain Size during Tensile Deformation by Using In-Situ X-Ray Diffraction Technique, Mater. Trans., 2015, 56(5), p 671–678

    Article  Google Scholar 

  44. K.F. Zhang and H.-H. Yan, Deformation Behavior of Fine-Grained 5083 Al Alloy at Elevated Temperature, Trans. Nonferrous Metals Soc. China, 2009, 19, p s307–s311

    Article  Google Scholar 

  45. A. Yilmaz, The Portevin–Le Chatelier Effect: A Review of Experimental Findings, Sci. Technol. Adv. Mater., 2011, 12(6), p 63001. https://doi.org/10.1088/1468-6996/12/6/063001

    Article  Google Scholar 

  46. K. Krishna, K.C. Sekhar, R. Tejas, N.N. Krishna, K. Sivaprasad, R. Narayanasamy, and K. Venkateswarlu, Effect of Cryorolling on the Mechanical Properties of AA5083 Alloy and the Portevin–Le Chatelier Phenomenon, Mater. Des., 2015, 67, p 107–117

    Article  Google Scholar 

  47. H. Ait-Amokhtar, C. Fressengeas, and K. Bouabdallah, On the Effects of the Mg Content on the Critical Strain for the Jerky Flow of Al-Mg Alloys, Mater. Sci. Eng., A, 2015, 631, p 209–213. https://doi.org/10.1016/j.msea.2015.02.055

    Article  Google Scholar 

  48. L. Ziani, S. Boudrahem, H. Ait-Amokhtar, M. Mehenni, and B. Kedjar, Unstable Plastic Flow in the Al-2%Mg Alloy, Effect of Annealing Process, Mater. Sci. Eng., A, 2012, 536, p 239–243. https://doi.org/10.1016/j.msea.2012.01.004

    Article  Google Scholar 

  49. H. Ait-Amokhtar and C. Fressengeas, Crossover from Continuous to Discontinuous Propagation in the Portevin–Le Chatelier Effect, Acta Mater., 2010, 58(4), p 1342–1349. https://doi.org/10.1016/j.actamat.2009.10.038

    Article  Google Scholar 

  50. H. Dierke, F. Krawehl, S. Graff, S. Forest, J. Šachl, and H. Neuhäuser, Portevin–Le Chatelier Effect in Al-Mg Alloys: Influence of Obstacles - Experiments and Modelling, Comput. Mater. Sci., 2007, 39(1), p 106–112

    Article  Google Scholar 

  51. P.C. Ma, D. Zhang, L.-Z. Zhuang, and J.-S. Zhang, Effect of Alloying Elements and Processing Parameters on the Portevin-Le Chatelier Effect of Aluminum-Magnesium Alloys, Int. J. Miner. Metall. Mater., 2015, 22(2), p 175–183

    Article  Google Scholar 

  52. N.B.K. Babu, M.J. Davidson, and A. Neelakanteswara Rao, Investigation on the Influence of the Lubrication on the Formability of Dissimilar Tailor Welded Blanks, Trans. Indian Inst. Met., 2015, 68(4), p 529–534. https://doi.org/10.1007/s12666-014-0482-8

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the help received from Prof. R. Jayaganthan, IIT Roorkee, Prof. I. Samjdar, IIT Bombay and Dr. S. Panigrahi, IIT Madras in characterization of the cold rolled and cryorolled samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fitsum Feyissa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feyissa, F., Ravi Kumar, D. & Rao, P.N. Characterization of Microstructure, Mechanical Properties and Formability of Cryorolled AA5083 Alloy Sheets. J. of Materi Eng and Perform 27, 1614–1627 (2018). https://doi.org/10.1007/s11665-018-3243-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3243-8

Keywords

Navigation