Advertisement

Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1614–1627 | Cite as

Characterization of Microstructure, Mechanical Properties and Formability of Cryorolled AA5083 Alloy Sheets

  • Fitsum Feyissa
  • D. Ravi Kumar
  • P. Nageswara Rao
Article
  • 182 Downloads

Abstract

In this work, microstructure, mechanical properties and formability of cryorolled and annealed AA5083 alloy sheets have been characterized and a comparison has been made with cold rolled and annealed sheets. Five-millimeter-thick sheets of this alloy were cryorolled in multiple passes to a final thickness of 1 mm (80% reduction with a true strain of 1.6). Effect of annealing time and temperature on hardness has been studied, and it has been found that a short annealing at 275 °C for 15 min after cryorolling would yield a good combination of strength and ductility. Microstructural investigations showed that the cryorolled and short annealed samples possess bimodal grain structure which is responsible for better mechanical properties than cold rolled sheets. From the experimentally determined forming limit diagrams, the limit strains of cryorolled sheets have been found to be almost equal to conventional cold rolled and annealed sheets in all modes of deformation. No major differences have been found in strain distribution also. This work clearly demonstrates that cryorolling of AA5083 alloy sheets followed by a short annealing with bimodal grain structure can be used for sheet metal forming applications with higher strength and toughness than conventional sheets without any reduction in formability.

Keywords

aluminum alloy cold rolling cryorolling formability ultrafine grain structure 

Notes

Acknowledgments

The authors acknowledge the help received from Prof. R. Jayaganthan, IIT Roorkee, Prof. I. Samjdar, IIT Bombay and Dr. S. Panigrahi, IIT Madras in characterization of the cold rolled and cryorolled samples.

References

  1. 1.
    I.J. Polmear, Light Alloys, Metallurgy of the Light Metals, 2nd ed., Edward Arnold, Melbourne, 1989, p 101–111Google Scholar
  2. 2.
    I.R. Dover and J.D. Embury, The Influence of Microstructural Features on the Formability of Aluminium Alloys, Mater. Forum, 1986, 9(4), p 188–201Google Scholar
  3. 3.
    J. Yan, N.M. Heckman, L. Velasco, and A.M. Hodge, Improve Sensitization and Corrosion Resistance of an Al-Mg Alloy by Optimization of Grain Boundaries, Sci. Rep., 2016,  https://doi.org/10.1038/srep26870 Google Scholar
  4. 4.
    H.L. Yu, C. Lu, A.K. Tieu, H.J. Li, A. Godbole, and S.H. Zhang, Special Rolling Techniques for Improvement of Mechanical Properties of Ultrafine-Grained Metal Sheets: A Review, Adv. Eng. Mater., 2015, 18, p 754–769CrossRefGoogle Scholar
  5. 5.
    Y. Wang, M. Chen, F. Zhou, and E. Ma, High Tensile Ductility in a Nanostructured Metal, Nature, 2002, 419(6910), p 912–915CrossRefGoogle Scholar
  6. 6.
    D. Singh, P. Nageswararao, and R. Jayaganthan, Microstructural Studies of Al 5083 Alloy Deformed through Cryorolling, Adv. Mater. Res., 2012, 585, p 376–380.  https://doi.org/10.4028/www.scientific.net/AMR.585.376 CrossRefGoogle Scholar
  7. 7.
    S. Cheng, Y.H. Zhao, Y.T. Zhu, and E. Ma, Optimizing the Strength and Ductility of Fine Structured 2024 Al Alloy by Nano-Precipitation, Acta Mater., 2007, 55(17), p 5822–5832CrossRefGoogle Scholar
  8. 8.
    D.K.K. Yang, P. Cizek, D. Fabijanic, J.T.T. Wang, and P.D.D. Hodgson, Work Hardening in Ultrafine-Grained Titanium: Multilayering and Grading, Acta Mater., 2013, 61(8), p 2840–2852CrossRefGoogle Scholar
  9. 9.
    A. Dhal, S.K. Panigrahi, and M.S. Shunmugam, Insight into the Microstructural Evolution During Cryo-Severe Plastic Deformation and Post-Deformation Annealing of Aluminum and Its Alloys, J. Alloy. Compd., 2017, 726, p 1205–1219CrossRefGoogle Scholar
  10. 10.
    S.K. Panigrahi and R. Jayaganthan, Influence of Solutes and Second Phase Particles on Work Hardening Behavior of Al 6063 Alloy Processed by Cryorolling, Mater. Sci. Eng., A, 2011, 528(7–8), p 3147–3160CrossRefGoogle Scholar
  11. 11.
    P.N. Rao, D. Singh, and R. Jayaganthan, Effect of Annealing on Microstructure and Mechanical Properties of Al 6061 Alloy Processed by Cryorolling, Mater. Sci. Technol., 2013, 29(1), p 76–82.  https://doi.org/10.1179/1743284712Y.0000000041 CrossRefGoogle Scholar
  12. 12.
    S.K. Panigrahi and R. Jayaganthan, Effect of Annealing on Precipitation, Microstructural Stability, and Mechanical Properties of Cryorolled Al 6063 Alloy, J. Mater. Sci., 2010, 45(20), p 5624–5636CrossRefGoogle Scholar
  13. 13.
    L.W. Quan, W.N. Mu, L. Kang, X. Ma, P. Han, and M.L. Huang, The Effect of Cryorolling on the Microstructure of Al-Cu-Mg Alloy, Mater. Sci. Forum, 2016, 877, p 188–193.  https://doi.org/10.4028/www.scientific.net/MSF.877.188 CrossRefGoogle Scholar
  14. 14.
    D. Singh, P.N. Rao, and R. Jayaganthan, Effect of Deformation Temperature on Mechanical Properties of Ultrafine Grained Al-Mg Alloys Processed by Rolling, Mater. Des., 2013, 50, p 646–655.  https://doi.org/10.1016/j.matdes.2013.02.068 CrossRefGoogle Scholar
  15. 15.
    S.K. Panigrahi and R. Jayaganthan, A Study on the Mechanical Properties of Cryorolled Al-Mg-Si Alloy, Mater. Sci. Eng., A, 2008, 480(1–2), p 299–305CrossRefGoogle Scholar
  16. 16.
    H. Yu, A.K. Tieu, C. Lu, X. Liu, M. Liu, A. Godbole, C. Kong, and Q. Qin, A New Insight into Ductile Fracture of Ultrafine-Grained Al-Mg Alloys, Sci. Rep., 2015, 5, p 9568CrossRefGoogle Scholar
  17. 17.
    H. Yu, H. Wang, C. Lu, A.K. Tieu, H. Li, A. Godbole, X. Liu, C. Kong, and X. Zhao, Microstructure Evolution of Accumulative Roll Bonding Processed Pure Aluminum during Cryorolling, J. Mater. Res., 2016, 31(6), p 797–805CrossRefGoogle Scholar
  18. 18.
    Y.B. Lee, D.H. Shin, K.-T. Park, and W.J. Nam, Effect of Annealing Temperature on Microstructures and Mechanical Properties of a 5083 Al Alloy Deformed at Cryogenic Temperature, Scripta Mater., 2004, 51(4), p 355–359CrossRefGoogle Scholar
  19. 19.
    D. Singh, P. Nageswara Rao, and R. Jayaganthan, Microstructures and Impact Toughness Behavior of Al 5083 Alloy Processed by Cryorolling and Afterwards Annealing, Int. J. Miner. Metall. Mater., 2013, 20(8), p 759–769CrossRefGoogle Scholar
  20. 20.
    T. Shanmugasundaram, B.S. Murty, and V. Subramanya Sarma, Development of Ultrafine Grained High Strength Al-Cu Alloy by Cryorolling, Scripta Mater., 2006, 54(12), p 2013–2017CrossRefGoogle Scholar
  21. 21.
    P.N. Rao, S.K. Panigrahi, and R. Jayaganthan, Effect of Annealing and Aging Treatment on Mechanical Properties of Ultrafine Grained Al 6061 Alloy, Mater. Sci. Technol., 2010, 26(3), p 371–374.  https://doi.org/10.1179/174328409X443227 CrossRefGoogle Scholar
  22. 22.
    P.N. Rao, A. Kaurwar, D. Singh, and R. Jayaganthan, Enhancement in Strength and Ductility of Al-Mg-Si Alloy by Cryorolling Followed by Warm Rolling, Proc. Eng., 2014, 75, p 123–128CrossRefGoogle Scholar
  23. 23.
    P. Das, R. Jayaganthan, and I.V. Singh, Tensile and Impact-Toughness Behaviour of Cryorolled Al 7075 Alloy, Mater. Des., 2011, 32, p 1298–1305CrossRefGoogle Scholar
  24. 24.
    Y. Shi, M. Li, D. Guo, T. Ma, Z. Zhang, X. Li, G. Zhang, and X. Zhang, Extraordinary Toughening by Cryorolling in Zr, Adv. Eng. Mater., 2014, 16(2), p 167–170CrossRefGoogle Scholar
  25. 25.
    B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, and M.X. Huang, High Dislocation Density-Induced Large Ductility in Deformed and Partitioned Steels, Science, 2017, 357(6355), p 1029–1032CrossRefGoogle Scholar
  26. 26.
    I.A. Ovid’Ko and T.G. Langdon, Enhanced Ductility of Nanocrystalline and Ultrafine-Grained Metals, Rev. Adv. Mater. Sci., 2012, 30(2), p 103–111Google Scholar
  27. 27.
    R.O. Ritchie, The Conflicts between Strength and Toughness, Nat. Mater. Nat. Res., 2011, 10(11), p 817–822CrossRefGoogle Scholar
  28. 28.
    Y. Wei, Y. Li, L. Zhu, Y. Liu, X. Lei, G. Wang, Y. Wu, Z. Mi, J. Liu, and H. Wang, Evading the Strength–ductility Trade-off Dilemma in Steel through Gradient Hierarchical Nanotwins, Nat. Commun., 2014, 5, p 3580Google Scholar
  29. 29.
    L. Lu, M.L. Sui, and K. Lu, Superplastic Extensibility of Nanocrystalline Copper at Room Temperature, Science, 2000, 287(5457), p 1463–1466CrossRefGoogle Scholar
  30. 30.
    K. Lu, Making Strong Nanomaterials Ductile with Gradients, Science, 2014, 345(6203), p 1455–1456CrossRefGoogle Scholar
  31. 31.
    V.A. Pozdnyakov, Ductility of Nanocrystalline Materials with a Bimodal Grain Structure, Tech. Phys. Lett., 2007, 33(12), p 1004–1006.  https://doi.org/10.1134/s1063785007120061 CrossRefGoogle Scholar
  32. 32.
    M.S. Oskooie, H. Asgharzadeh, and H.S. Kim, Microstructure, Plastic Deformation and Strengthening Mechanisms of an Al–Mg–Si Alloy with a Bimodal Grain Structure, J. Alloy. Compd., 2015, 632, p 540–548CrossRefGoogle Scholar
  33. 33.
    K. Krishna, S. Vigneshwaran, K.C. Sekhar, S.S.R. Akella, K. Sivaprasad, R. Narayanasamy, and K. Venkateswarlu, Mechanical Behavior and Void Coalescence Analysis of Cryorolled AA8090 Alloy, Int. J. Adv. Manuf. Technol., 2016, 93, p 1–7CrossRefGoogle Scholar
  34. 34.
    N. Rangaraju, T. Raghuram, B.V. Krishna, K.P. Rao, and P. Venugopal, Effect of Cryo-Rolling and Annealing on Microstructure and Properties of Commercially Pure Aluminium, Mater. Sci. Eng., A, 2005, 398(1), p 246–251CrossRefGoogle Scholar
  35. 35.
    S.H. Choi, J.H. Cho, K.H. Oh, F. Barlat, K. Chung, and J.W. Kwon, Prediction of Yield Surfaces of Textured Sheet Metals, Metall. Mater. Trans. A, 1999, 30(2), p 377–386CrossRefGoogle Scholar
  36. 36.
    K.K. Mathur, P.R. Dawson, and U.F. Kocks, On Modeling Anisotropy in Deformation Processes Involving Textured Polycrystals with Distorted Grain Shape, Mech. Mater., 1990, 10(3), p 183–202CrossRefGoogle Scholar
  37. 37.
    A.S. Taylor, M. Weiss, T. Hilditch, P.D. Hodgson, and N. Stanford, Cryo-Rolling and Formability of 2024 Aluminium, Mater. Sci. Forum, 2013, 765, p 434–438.  https://doi.org/10.4028/www.scientific.net/MSF.765.434 CrossRefGoogle Scholar
  38. 38.
    K.C. Sekhar, R. Narayanasamy, and K. Velmanirajan, Experimental Investigations on Microstructure and Formability of Cryorolled AA 5052 Sheets, Mater. Des., 2014, 53, p 1064–1070CrossRefGoogle Scholar
  39. 39.
    W.F. Hosford and R.M. Caddell, Metal Forming: Mechanics and Metallurgy, Cambridge University Press, New York, 2011, p 207–216CrossRefGoogle Scholar
  40. 40.
    A.K. Ghosh and S.S. Hecker, Failure in Thin Sheets Stretched over Rigid Punches, Metall. Trans. A, 1975, 6(5), p 1065–1074.  https://doi.org/10.1007/BF02661361 CrossRefGoogle Scholar
  41. 41.
    K. Nakazima, T. Kikuma, and K. Hasuka, Study on the Formability of Steel Sheets, Yawata Tech. Rep., 1968, 264, p 8517–8530Google Scholar
  42. 42.
    G.K. Williamson and W.H. Hall, X-Ray Line Broadening from Filed Aluminium and Wolfram, Acta Metall., 1953, 1(1), p 22–31CrossRefGoogle Scholar
  43. 43.
    H. Adachi, Y. Miyajima, M. Sato, and N. Tsuji, Evaluation of Dislocation Density for 1100 Aluminum with Different Grain Size during Tensile Deformation by Using In-Situ X-Ray Diffraction Technique, Mater. Trans., 2015, 56(5), p 671–678CrossRefGoogle Scholar
  44. 44.
    K.F. Zhang and H.-H. Yan, Deformation Behavior of Fine-Grained 5083 Al Alloy at Elevated Temperature, Trans. Nonferrous Metals Soc. China, 2009, 19, p s307–s311CrossRefGoogle Scholar
  45. 45.
    A. Yilmaz, The Portevin–Le Chatelier Effect: A Review of Experimental Findings, Sci. Technol. Adv. Mater., 2011, 12(6), p 63001.  https://doi.org/10.1088/1468-6996/12/6/063001 CrossRefGoogle Scholar
  46. 46.
    K. Krishna, K.C. Sekhar, R. Tejas, N.N. Krishna, K. Sivaprasad, R. Narayanasamy, and K. Venkateswarlu, Effect of Cryorolling on the Mechanical Properties of AA5083 Alloy and the Portevin–Le Chatelier Phenomenon, Mater. Des., 2015, 67, p 107–117CrossRefGoogle Scholar
  47. 47.
    H. Ait-Amokhtar, C. Fressengeas, and K. Bouabdallah, On the Effects of the Mg Content on the Critical Strain for the Jerky Flow of Al-Mg Alloys, Mater. Sci. Eng., A, 2015, 631, p 209–213.  https://doi.org/10.1016/j.msea.2015.02.055 CrossRefGoogle Scholar
  48. 48.
    L. Ziani, S. Boudrahem, H. Ait-Amokhtar, M. Mehenni, and B. Kedjar, Unstable Plastic Flow in the Al-2%Mg Alloy, Effect of Annealing Process, Mater. Sci. Eng., A, 2012, 536, p 239–243.  https://doi.org/10.1016/j.msea.2012.01.004 CrossRefGoogle Scholar
  49. 49.
    H. Ait-Amokhtar and C. Fressengeas, Crossover from Continuous to Discontinuous Propagation in the Portevin–Le Chatelier Effect, Acta Mater., 2010, 58(4), p 1342–1349.  https://doi.org/10.1016/j.actamat.2009.10.038 CrossRefGoogle Scholar
  50. 50.
    H. Dierke, F. Krawehl, S. Graff, S. Forest, J. Šachl, and H. Neuhäuser, Portevin–Le Chatelier Effect in Al-Mg Alloys: Influence of Obstacles - Experiments and Modelling, Comput. Mater. Sci., 2007, 39(1), p 106–112CrossRefGoogle Scholar
  51. 51.
    P.C. Ma, D. Zhang, L.-Z. Zhuang, and J.-S. Zhang, Effect of Alloying Elements and Processing Parameters on the Portevin-Le Chatelier Effect of Aluminum-Magnesium Alloys, Int. J. Miner. Metall. Mater., 2015, 22(2), p 175–183CrossRefGoogle Scholar
  52. 52.
    N.B.K. Babu, M.J. Davidson, and A. Neelakanteswara Rao, Investigation on the Influence of the Lubrication on the Formability of Dissimilar Tailor Welded Blanks, Trans. Indian Inst. Met., 2015, 68(4), p 529–534.  https://doi.org/10.1007/s12666-014-0482-8 CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Fitsum Feyissa
    • 1
  • D. Ravi Kumar
    • 1
  • P. Nageswara Rao
    • 2
  1. 1.Mechanical Engineering DepartmentIndian Institute of Technology DelhiNew DelhiIndia
  2. 2.Mechanical Engineering DepartmentMarri Laxman Reddy Institute of Technology and ManagementHyderabadIndia

Personalised recommendations