Skip to main content
Log in

Investigation of Mild Steel Thin-Wall Tubes in Unfilled and Foam-Filled Triangle, Square, and Hexagonal Cross Sections Under Compression Load

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study has examined proposed structures with mild steel-reinforced LM30 aluminum (Al) alloy having diversely unfilled and 10 wt.% SiCp composite foam-filled tubes for improving axial compression performance. This class of material has novel physical, mechanical, and electrical properties along with low density. In the present experiment, Al alloy foams were prepared by the melt route technique using metal hydride powder as a foaming agent. Crash energy phenomena for diverse unfilled and foam-filled in mild steel thin-wall tubes (triangular, square and hexagonal) were studied as well. Compression deformation investigation was conducted at strain rates of 0.001-0.1/s for evaluating specific energy absorption (SEA) under axial loading conditions. The results were examined to measure plateau stress, maximum densification strain, and deformation mechanism of the materials. Specific energy absorption and total energy absorption capacities of the unfilled and filled sections were determined from the compressive stress–strain curves, which were then compared with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.M. Holdridge, V.N. Shankar, and G.F. Ulfarsson, The Crash Severity Impacts of Fixed Roadside Objects, J. Safety Res., 2005, 36(2), p 139–147

    Article  Google Scholar 

  2. L. Guo and J. Yu, Dynamic Bending Response of Double Cylindrical Tubes Filled with Aluminum Foam, Int. J. Impact Eng, 2011, 238(2), p 85–94

    Article  Google Scholar 

  3. M.M. Abedi, A. Niknejad, G.H. Liaghat, and M.Z. Nejad, Theoretical and Experimental Study on Empty and Foam-Filled Columns with Square and Rectangular Cross Section Under Axial Compression, Int. J. Mech. Sci., 2012, 65(1), p 134–146

    Article  Google Scholar 

  4. A. Darvizeh, M. Darvizeh, R. Ansari, and A. Meshkinzar, Effect of Low Density, Low Strength Polyurethane Foam on The Energy Absorption Characteristics of Circumferentially Grooved Thick-Walled Circular Tubes, Thin Wall. Struct., 2013, 71, p 81–90

    Article  Google Scholar 

  5. A.G. Hanssen, M. Langseth, and O.S. Hopperstad, Optimum Design for Energy Absorption of Square Aluminium Columns with Aluminium Foam Filler, Int. J. Mech. Sci., 2001, 43(1), p 153–176

    Article  Google Scholar 

  6. M. Guden and H. Kavi, Quasi-Static Axial Compression Behaviour of Constraint Hexagonal and Square-Packed Empty and Aluminum Foam-Filled Aluminum Multi-Tubes, Thin Wall. Struct., 2006, 44(7), p 739–750

    Article  Google Scholar 

  7. A.G. Hanssen, M. Langseth, and O.S. Hopperstad, The Static and Dynamic Crushing of Circular Aluminium Extrusions with Aluminium Foam Filler, Int. J. Impact Eng, 2000, 24(5), p 475–507

    Article  Google Scholar 

  8. A.G. Hanssen, M. Langseth, and O.S. Hopperstad, Static and Dynamic Crushing of Square Aluminium Extrusions with Aluminium Foam Filler, Int. J. Impact Eng, 2000, 24(4), p 347–383

    Article  Google Scholar 

  9. J.M. Babbage and P.K. Mallick, Static Axial Crush Performance of Unfilled and Foam-Filled Aluminium–Composite Hybrid Tubes, Compos. Struct., 2005, 70(2), p 177–184

    Article  Google Scholar 

  10. S.R. Guillow, G. Lu, and R.H. Grzebieta, Quasi-Static Axial Compression of Thin-Walled Circular Aluminium Tubes, Int. J. Mech. Sci., 2001, 43, p 2103–2123

    Article  Google Scholar 

  11. T.Y. Reddy and R.J. Wall, Axial Compression of Foam-Filled Thin-Walled Circular Tubes, Int. J. Impact Eng, 1988, 7, p 151–166

    Article  Google Scholar 

  12. A.G. Mamalis, D.E. Manolakos, G.A. Demosthenous, and W. Johnson, Axial Plastic Collapse of Thin Bi-Material Tubes as Energy Dissipating Systems, Int. J. Impact Eng, 1991, 11, p 185–196

    Article  Google Scholar 

  13. D.K. Rajak, L.A. Kumaraswamidhas, and S. Das, Investigation, and Characterization of Aluminium Alloy Foams with TiH2 as Foaming Agent, Mater. Sci. Technol., 2016, 32(13), p 1338–1345

    Article  Google Scholar 

  14. L.A. Kumaraswamidhas, D.K. Rajak, and S. Das, An Investigation on the Axial Deformation Behaviour of Thin-Wall Unfilled and Filled the Tube with Aluminium Alloy (Al–Si7 Mg) Foam-Reinforced with SiC Particles, J. Mater. Eng. Perform., 2016, 25(8), p 3430–3438

    Article  Google Scholar 

  15. D.K. Rajak, L.A. Kumaraswamidhas, and S. Das, An Energy Absorption Behaviour of Foam Filled Structures, Proc. Mater. Sci., 2014, 5, p 164–172

    Article  Google Scholar 

  16. G.J. Davies and S. Zhen, Metallic Foams: Their Production, Properties and Applications, J. Mater. Sci., 1983, 18(7), p 1899–1911

    Article  Google Scholar 

  17. L.J. Gibson, Metal Matrix Composite, Handbook, 3rd edn. Kelly Anthony, Zweben Carl, 2000, p 821

  18. J. Banhart, Manufacturing Routes for Metallic Foams, J. Metal., 2000, 12, p 22–27

    Google Scholar 

  19. V. Gergely and T.W. Clyne, Drainage in Standing Liquid Metal Foams: Modelling and Experimental Observations, Acta Mater., 2004, 52, p 3047–3058

    Article  Google Scholar 

  20. C. Korner and R.F. Singer, Processing of Metal Foams—Challenges and Opportunities, Adv. Eng. Mater., 2000, 2(4), p 159–165

    Article  Google Scholar 

  21. I. Duarte, J. Mascarenhas, A. Ferreira, and J. Banhart, The Evolution of Morphology and Kinetics During the Foaming Process of Aluminium, Key Eng. Mater., 2002, 2320–232, p 96–101

    Article  Google Scholar 

  22. A.E. Simone and L.J. Gibson, Aluminium Foams Produced by Liquid-State Processes, Acta Mater., 1998, 46(9), p 3109–3123

    Article  Google Scholar 

  23. Y. Miyoshi, M. Itoh, S. Akiyama, and A. Kitahara, ALPORAS Aluminium Foam: Production Process, Properties, and Applications, Adv. Eng. Mater., 2002, 2(4), p 179–183

    Article  Google Scholar 

  24. W. Deqing and S. Ziyuan, Effect of Ceramic Particles on Cell Size and a Wall Thickness of Aluminium Foam, Mater. Sci. Eng., 2003, 361, p 45–49

    Article  Google Scholar 

  25. B. Kritzt, U. Martin, U. Mosler, Handbook of Cellular Metals: Production, Processing, Application, 2002, p 130

  26. O. Prakash, H. Sang, and J.D. Embury, Structure and Properties of the Al–SiC Foam, Mater. Sci. Eng., A, 1995, 199, p 195–203

    Article  Google Scholar 

  27. S.W. Ip, Y. Wang, and J.D. Toguri, Aluminium Foam Stabilization by Solid Particles, Can. Matall. Q., 1999, 38(1), p 81–92

    Article  Google Scholar 

  28. A. Haibel, A. Rack, and J. Banhart, Why are Metal Foams Stable, Appl. Phys. Lett., 2006, 89(15), p 154102

    Article  Google Scholar 

  29. D.K. Rajak, L.A. Kumaraswamidhas, S. Das, and S.S. Kumaran, Characterization and Analysis of Compression Load Behaviour of Aluminium Alloy Foam Under the Diverse Strain Rate, J. Alloys Compd., 2016, 656, p 218–225

    Article  Google Scholar 

  30. D.K. Rajak, L.A. Kumaraswamidhas, and S. Das, Energy Absorption Capacity of Empty and Foam Filled Mild Steel Tube Under Low Strain Rate at Room Temperature, Adv. Mater. Lett., 2015, 6(6), p 548–553

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors, Dipen Kumar Rajak, gratefully acknowledges the experimental support of LWMM group CSIR-AMPRI, Bhopal. The authors thank Director, CSIR-AMPRI Bhopal and Indian Institute of Technology (Indian School of Mines) Dhanbad for giving permission to publish this research work. The technical support of the CSIR-AMPRI Bhopal during the Ph.D. research program of Dipen Kumar Rajak is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipen Kumar Rajak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajak, D.K., Kumaraswamidhas, L.A. & Das, S. Investigation of Mild Steel Thin-Wall Tubes in Unfilled and Foam-Filled Triangle, Square, and Hexagonal Cross Sections Under Compression Load. J. of Materi Eng and Perform 27, 1936–1944 (2018). https://doi.org/10.1007/s11665-018-3241-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3241-x

Keywords

Navigation