Skip to main content
Log in

Assessing Constitutive Models for Prediction of High-Temperature Flow Behavior with a Perspective of Alloy Development

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The utility of different constitutive models describing high-temperature flow behavior has been evaluated from the perspective of alloy development. Strain compensated Arrhenius model, modified Johnson–Cook (MJC) model, model D8A and artificial neural network (ANN) have been used to describe flow behavior of different model alloys. These alloys are four grades of SS 316LN with different nitrogen contents ranging from 0.07 to 0.22%. Grades with 0.07%N and 0.22%N have been used to determine suitable material constants of the constitutive equations and also to train the ANN model. While the ANN model has been developed with chemical composition as a direct input, the MJC and D8A models have been amended to incorporate the effect of nitrogen content on flow behavior. The prediction capabilities of all models have been validated using the experimental data obtained from grades containing 0.11%N and 0.14%N. The comparative analysis demonstrates that ‘N-amended D8A’ and ‘N-amended MJC’ are preferable to the ANN model for predicting flow behavior of different grades of 316LN. The work provides detailed insights into the usual statistical error analysis technique and frames five additional criteria which must be considered when a model is analyzed from the perspective of alloy development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Lin and X.-M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32(4), p 1733–1759

    Article  Google Scholar 

  2. G.R. Johnson, W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Symposium on Ballistics, The Netherlands, 1983, p 541–547

  3. F.J. Zerilli and R.W. Armstrong, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61(5), p 1816–1825

    Article  Google Scholar 

  4. G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21(1), p 31–48

    Article  Google Scholar 

  5. Y.Q. Cheng, H. Zhang, Z.H. Chen, and K.F. Xian, Flow Stress Equation of AZ31 Magnesium Alloy Sheet During Warm Tensile Deformation, J. Mater. Process. Technol., 2008, 208(1), p 29–34

    Article  Google Scholar 

  6. H. Kobayashi and B. Dodd, A numerical Analysis for the Formation of Adiabatic Shear Bands Including Void Nucleation and Growth, Int. J. Impact Eng, 1989, 8(1), p 1–13

    Article  Google Scholar 

  7. Y. Wang and Z. Jiang, Dynamic Compressive Behavior of Selected Aluminum Alloy at Low Temperature, Mater. Sci. Eng. A, 2012, 553, p 176–180

    Article  Google Scholar 

  8. S.K. Paul, Predicting the Flow Behavior of Metals Under Different Strain Rate and Temperature Through Phenomenological Modeling, Comput. Mater. Sci., 2012, 65, p 91–99

    Article  Google Scholar 

  9. A.S. Khan and S. Huang, Experimental and Theoretical Study of Mechanical Behavior of 1100 Aluminum in the Strain Rate Range 10−5–104 s−1, Int. J. Plast., 1992, 8(4), p 397–424

    Article  Google Scholar 

  10. S. Saadatkia, H. Mirzadeh, and J.-M. Cabrera, Hot Deformation Behavior, Dynamic Recrystallization, and Physically-Based Constitutive Modeling of Plain Carbon Steels, Mater. Sci. Eng. A, 2015, 636, p 196–202

    Article  Google Scholar 

  11. G. Ji, Q. Li, and L. Li, A Physical-Based Constitutive Relation to Predict Flow Stress for Cu-0.4 Mg Alloy During Hot Working, Mater. Sci. Eng. A, 2014, 615, p 247–254

    Article  Google Scholar 

  12. A. He, G. Xie, X. Yang, X. Wang, and H. Zhang, A Physically-Based Constitutive Model for a Nitrogen Alloyed Ultralow Carbon Stainless Steel, Comput. Mater. Sci., 2015, 98, p 64–69

    Article  Google Scholar 

  13. D. Samantaray, S. Mandal, A. Bhaduri, S. Venugopal, and P. Sivaprasad, Analysis and Mathematical Modelling of Elevated Temperature Flow Behaviour of Austenitic Stainless Steels, Mater. Sci. Eng. A, 2011, 528(4), p 1937–1943

    Article  Google Scholar 

  14. D. Trimble, H. Shipley, L. Lea, A. Jardine, and G.E. O’Donnell, Constitutive Analysis of Biomedical Grade Co-27Cr-5Mo Alloy at High Strain Rates, Mater. Sci. Eng. A, 2017, 682, p 466–474

    Article  Google Scholar 

  15. Z. Zhu, Y. Lu, Q. Xie, D. Li, and N. Gao, Mechanical Properties and Dynamic Constitutive Model of 42CrMo Steel, Mater. Des., 2017, 119, p 171–179

    Article  Google Scholar 

  16. J. Cai, Y. Lei, K. Wang, X. Zhang, C. Miao, and W. Li, A Comparative Investigation on the Capability of Modified Zerilli–Armstrong and Arrhenius-Type Constitutive Models to Describe Flow Behavior of BFe10-1-2 Cupronickel Alloy at Elevated Temperature, J. Mater. Eng. Perform., 2016, 25(5), p 1952–1963

    Article  Google Scholar 

  17. Y. Lin, X.-M. Chen, and G. Liu, A modified Johnson–Cook Model for Tensile Behaviors of Typical High-Strength Alloy Steel, Mater. Sci. Eng. A, 2010, 527(26), p 6980–6986

    Article  Google Scholar 

  18. A. He, G. Xie, H. Zhang, and X. Wang, A Comparative Study on Johnson–Cook, Modified Johnson–Cook and Arrhenius-Type Constitutive Models to Predict the High Temperature Flow Stress in 20CrMo Alloy Steel, Mater. Des., 2013, 52, p 677–685

    Article  Google Scholar 

  19. Y. Lin and X.-M. Chen, A Combined Johnson–Cook and Zerilli–Armstrong Model for Hot Compressed Typical High-Strength Alloy Steel, Comput. Mater. Sci., 2010, 49(3), p 628–633

    Article  Google Scholar 

  20. Y.C. Lin, Q.-F. Li, Y.-C. Xia, and L.-T. Li, A Phenomenological Constitutive Model for High Temperature Flow Stress Prediction of Al-Cu-Mg Alloy, Mater. Sci. Eng. A, 2012, 534, p 654–662

    Article  Google Scholar 

  21. Z. Akbari, H. Mirzadeh, and J.-M. Cabrera, A Simple Constitutive Model for Predicting Flow Stress of Medium Carbon Microalloyed Steel During Hot Deformation, Mater. Des., 2015, 77, p 126–131

    Article  Google Scholar 

  22. S. Mandal, B.T. Gockel, S. Balachandran, D. Banerjee, and A.D. Rollett, Simulation of Plastic Deformation in Ti-5553 Alloy Using a Self-Consistent Viscoplastic Model, Int. J. Plast., 2017, 94, p 57–73

    Article  Google Scholar 

  23. P.S. Follansbee and U.F. Kocks, A Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable, Acta Metall., 1988, 36(1), p 81–93

    Article  Google Scholar 

  24. K.S. Prasad, A.K. Gupta, Y. Singh, and S.K. Singh, A Modified Mechanical Threshold Stress Constitutive Model for Austenitic Stainless Steels, J. Mater. Eng. Perform., 2016, 25(12), p 5411–5423

    Article  Google Scholar 

  25. L.-E. Lindgren, K. Domkin, and S. Hansson, Dislocations, Vacancies and Solute Diffusion in Physical Based Plasticity Model for AISI, 316L, Mech. Mater., 2008, 40(11), p 907–919

    Article  Google Scholar 

  26. S. Venkadesan, P. Sivaprasad, M. Vasudevan, S. Venugopal, and P. Rodriguez, Effect of Ti/C Ratio and Prior Cold Work on the Tensile Properties of 15Cr-15Ni-2.2 Mo-Ti Modified Austenitic Stainless Steel, Trans. Indian Inst. Met., 1992, 45(1), p 57–68

    Google Scholar 

  27. P.V. Sivaprasad, Hot Deformation Behaviour of 15Cr-15Ni-2.2 Mo-Ti modified Stainless Steels and 9Cr-1M of Ferritic Steels: A Study Using Processing Maps and Process Modelling. Ph.D. Indian Institute of Technology, 1997

  28. A. Poonguzhali, M. Pujar, and U.K. Mudali, Effect of Nitrogen and Sensitization on the Microstructure and Pitting Corrosion Behavior of AISI, Type 316LN Stainless Steels, J. Mater. Eng. Perform., 2013, 22(4), p 1170–1178

    Article  Google Scholar 

  29. M. Mathew, K. Laha, and V. Ganesan, Improving Creep Strength of 316L Stainless Steel by Alloying with Nitrogen, Mater. Sci. Eng. A, 2012, 535, p 76–83

    Article  Google Scholar 

  30. S. Mandal, P. Sivaprasad, S. Venugopal, K. Murthy, and B. Raj, Artificial Neural Network Modeling of Composition–Process–Property Correlations in Austenitic Stainless Steels, Mater. Sci. Eng. A, 2008, 485(1), p 571–580

    Article  Google Scholar 

  31. X. Xia, J. Nie, C. Davies, W. Tang, S. Xu, and N. Birbilis, An Artificial Neural Network for Predicting Corrosion Rate and Hardness of Magnesium Alloys, Mater. Des., 2016, 90, p 1034–1043

    Article  Google Scholar 

  32. S. Malinov and W. Sha, Application of Artificial Neural Networks for Modelling Correlations in Titanium Alloys, Mat. Sci. Eng. A, 2004, 365(1), p 202–211

    Article  Google Scholar 

  33. D. Samantaray, S. Mandal, and A. Bhaduri, A Critical Comparison of Various Data Processing Methods in Simple Uni-Axial Compression Testing, Mater. Des., 2011, 32(5), p 2797–2802

    Article  Google Scholar 

  34. R. Goetz and S. Semiatin, The Adiabatic Correction Factor for Deformation Heating During the Uniaxial Compression Test, J. Mater. Eng. Perform., 2001, 10(6), p 710–717

    Article  Google Scholar 

  35. V. Ganesan, M. Mathew, and K. Sankara Rao, Influence of Nitrogen on Tensile Properties of 316LN SS, Mater. Sci. Technol., 2009, 25(5), p 614–618

    Article  Google Scholar 

  36. V. Gavriljuk and H. Berns, High Nitrogen Steels: Structure, Properties, Manufacture, Applications, Springer, New York, 2013

    Google Scholar 

  37. J. Simmons, Overview: High-Nitrogen Alloying of Stainless Steels, Mater. Sci. Eng. A, 1996, 207(2), p 159–169

    Article  Google Scholar 

  38. J. Simmons, Influence of Nitride (Cr 2N) Precipitation on the Plastic Flow Behavior of High-Nitrogen Austenitic Stainless Steel, Scr. Metall. Mater., 1995, 32(2), p 265–270

    Article  Google Scholar 

  39. D. Samantaray, S. Mandal, V. Kumar, S. Albert, A. Bhaduri, and T. Jayakumar, Optimization of Processing Parameters Based on High Temperature Flow Behavior and Microstructural Evolution of a Nitrogen Enhanced 316L (N) Stainless Steel, Mat. Sci. Eng. A, 2012, 552, p 236–244

    Article  Google Scholar 

  40. D. Samantaray, B. Aashranth, S. Kumar, M.A. Davinci, U. Borah, S.K. Albert, and A. Bhaduri, Plastic Deformation of SS 316LN: Thermo-Mechanical and Microstructural Aspects, Procedia Eng., 2017, 207, p 1785–1790

    Article  Google Scholar 

  41. S. Kumar, D. Samantaray, U. Borah, and A.K. Bhaduri, Analysis of Elevated Temperature Flow Behavior of 316LN Stainless Steel Under Compressive Loading, Trans. Indian Inst. Met., 2016, 70(7), p 1857–1867

    Article  Google Scholar 

  42. D. Trimble and G.E. O’Donnell, Constitutive Modelling for Elevated Temperature Flow Behaviour of AA7075, Mater. Des., 2015, 76, p 150–168

    Article  Google Scholar 

  43. J. Wang, G. Zhao, L. Chen, and J. Li, A Comparative Study of Several Constitutive Models for Powder Metallurgy Tungsten at Elevated Temperature, Mater. Des., 2016, 90, p 91–100

    Article  Google Scholar 

  44. P. Zhang, C. Hu, Q. Zhu, C.-G. Ding, and H.-Y. Qin, Hot Compression Deformation and Constitutive Modeling of GH4698 Alloy, Mater. Des. (1980–2015), 2015, 65, p 1153–1160

    Article  Google Scholar 

  45. Y.C. Lin, D.-X. Wen, J. Deng, G. Liu, and J. Chen, Constitutive Models for High-Temperature Flow Behaviors of a Ni-Based Superalloy, Mater. Des., 2014, 59, p 115–123

    Article  Google Scholar 

  46. L. Zhang, X. Feng, X. Wang, and C. Liu, On the Constitutive Model of Nitrogen-Containing Austenitic Stainless Steel 316LN at Elevated Temperature, PLoS ONE, 2014, 9(11), p e102687

    Article  Google Scholar 

  47. A.K. Shukla, S.V.S. Narayana Murty, S.C. Sharma, and K. Mondal, Constitutive Modeling of Hot Deformation Behavior of Vacuum Hot Pressed Cu-8Cr-4Nb Alloy, Mater. Des., 2015, 75, p 57–64

    Article  Google Scholar 

  48. D. Samantaray, A. Patel, U. Borah, S. Albert, and A. Bhaduri, Constitutive Flow Behavior of IFAC-1 Austenitic Stainless Steel Depicting Strain Saturation Over a Wide Range of Strain Rates and Temperatures, Mater. Des., 2014, 56, p 565–571

    Article  Google Scholar 

  49. A. Jenab, I. Sari Sarraf, D.E. Green, T. Rahmaan, and M.J. Worswick, The Use of Genetic Algorithm and Neural Network to Predict Rate-Dependent Tensile Flow Behaviour of AA5182-O Sheets, Mater. Des., 2016, 94, p 262–273

    Article  Google Scholar 

  50. S.-W. Wu, X.-G. Zhou, G.-M. Cao, Z.-Y. Liu, and G.-D. Wang, The Improvement on Constitutive Modeling of Nb-Ti Micro Alloyed Steel by Using Intelligent Algorithms, Mater. Des., 2017, 116, p 676–685

    Article  Google Scholar 

  51. C.M. Sellars and W. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14(9), p 1136–1138

    Article  Google Scholar 

  52. Y.-C. Lin, M.-S. Chen, and J. Zhang, Modeling of Flow Stress of 42CrMo Steel Under Hot Compression, Mater. Sci. Eng. A, 2009, 499(1), p 88–92

    Article  Google Scholar 

  53. W. Peng, W. Zeng, Q. Wang, and H. Yu, Comparative Study on Constitutive Relationship of As-Cast Ti60 Titanium Alloy During Hot Deformation Based on Arrhenius-Type and Artificial Neural Network Models, Mater. Des., 2013, 51, p 95–104

    Article  Google Scholar 

  54. D. Samantaray, S. Mandal, and A. Bhaduri, Constitutive Analysis to Predict High-Temperature Flow Stress in Modified 9Cr-1Mo (P91) Steel, Mater. Des., 2010, 31(2), p 981–984

    Article  Google Scholar 

  55. Y.C. Lin, J. Zhang, and J. Zhong, Application of Neural Networks to Predict the Elevated Temperature Flow Behavior of a Low Alloy Steel, Comput. Mater. Sci., 2008, 43(4), p 752–758

    Article  Google Scholar 

  56. G. Ji, F. Li, Q. Li, H. Li, and Z. Li, A Comparative Study on Arrhenius-Type Constitutive Model and Artificial Neural Network Model to Predict High-Temperature Deformation Behaviour in Aermet100 Steel, Mater. Sci. Eng. A, 2011, 528(13), p 4774–4782

    Article  Google Scholar 

  57. Y. Qin, Q. Pan, Y. He, W. Li, X. Liu, and X. Fan, Artificial Neural Network Modeling to Evaluate and Predict the Deformation Behavior of ZK60 Magnesium Alloy During Hot Compression, Mater. Manuf. Process., 2010, 25(7), p 539–545

    Article  Google Scholar 

  58. A. Jenab, A.K. Taheri, and K. Jenab, The Use of ANN to Predict the Hot Deformation Behavior of AA7075 at Low Strain Rates, J. Mater. Eng. Perform., 2013, 22(3), p 903–910

    Article  Google Scholar 

  59. A. Sarkar and J. Chakravartty, Prediction of Flow Stress in Cadmium Using Constitutive Equation and Artificial Neural Network Approach, J. Mater. Eng. Perform., 2013, 22(10), p 2982–2989

    Article  Google Scholar 

  60. S.L. Semiatin and J.J. Jonas, Formability and Workability of Metals: Plastic Instability and Flow Localization, Am. Soc. Met., 1984, 1984, p 299

    Google Scholar 

  61. T. Holota, M. Kotus, M. Holienčinová, J. Mareček, and M. Zach, Application of Radar Chart in the Selection of Material for Clutch Plates, Acta Univ. Agric. Silvic. Mendel. Brun., 2015, 63, p 5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipti Samantaray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Aashranth, B., Davinci, M.A. et al. Assessing Constitutive Models for Prediction of High-Temperature Flow Behavior with a Perspective of Alloy Development. J. of Materi Eng and Perform 27, 2024–2037 (2018). https://doi.org/10.1007/s11665-018-3237-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3237-6

Keywords

Navigation