Skip to main content

Advertisement

Log in

The Precipitation Behavior and Hot Deformation Characteristics of Electron Beam Smelted Inconel 740 Superalloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The Inconel 740 superalloy was prepared by the electron beam smelting (EBS) technology, the precipitation behavior and strengthening mechanism were studied, and the hot deformation characteristics of EBS 740 superalloy were investigated. The results indicate that the EBS 740 superalloy is mainly strengthened by the mechanism of weakly coupled dislocation shearing, and the resulting critical shear stress is calculated to be 234.6 MPa. The deformation parameters show a great influence on the flow behavior of EBS 740 superalloy. The strain rate sensitivity exponent increases with the increasing of deformation temperature, and the strain hardening exponent shows a decreasing trend with the increasing of strain. The activation energy of EBS 740 above 800 °C is measured to be 408.43 kJ/mol, which is higher than the 740H superalloy. A hyperbolic-sine-type relationship can be observed between the peak stress and Zener–Hollomon parameter. Nevertheless, the influence of deformation parameters is found to be considerably different at temperatures below and above 800 °C. The size of dynamic recrystallization (DRX) grains decreases with the increasing of strain rate when the strain rate is lower than 1/s, and reverse law can be found at higher strain rate. As a result, a piecewise function is established between the DRX grain size and hot working parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Viswanathan, K. Coleman, and U. Rao, Materials for Ultra-Supercritical Coal-Fired Power Plant Boilers, Int. J. Pres. Ves. Pip., 2006, 83, p 778–783

    Article  Google Scholar 

  2. X. You, Y. Tan, J. Li, P. Li, C. Dong, S. Shi, J. Liao, and S. Qin, Effects of Solution Heat Treatment on the Microstructure and Hardness of Inconel 740 Superalloy Prepared by Electron Beam Smelting, J. Alloys Compd., 2015, 638, p 239–248

    Article  Google Scholar 

  3. Y. Tan, X. You, Q. You, J. Li, S. Shi, and P. Li, Microstructure and Deformation Behavior of Nickel Based Superalloy Inconel 740 Prepared by Electron Beam Smelting, Mater. Charact., 2016, 114, p 267–276

    Article  Google Scholar 

  4. X. You, Y. Tan, Q. You, S. Shi, J. Li, F. Ye, and X. Wei, Preparation of Inconel 740 Superalloy by Electron Beam Smelting, J. Alloys Compd., 2016, 676, p 202–208

    Article  Google Scholar 

  5. A. Choudhury and E. Hengsberger, Elerctron Beam Melting and Refinining of Metals and Alloys, ISIJ Int., 1992, 32, p 673–681

    Article  Google Scholar 

  6. H. Yuan and W.C. Liu, Effect of the δ Phase on the Hot Deformation Behavior of Inconel 718, Mater. Sci. Eng. A, 2005, 408, p 281–289

    Article  Google Scholar 

  7. A. Thomas, M. El-Wahabi, J.M. Cabrera, and J.M. Prado, High Temperature Deformation of Inconel 718, J. Mater. Process. Technol., 2006, 177, p 469–472

    Article  Google Scholar 

  8. L.M. Brown, R.K. Ham, Strengthening Methods in Crystals, A. Kelly, R.B. Nicholson, Eds., Halsted Press Division, Wiley, New York, NY, 1971, p 9

  9. W. Huther and B. Reppich, Interaction of Dislocations with Coherent, Stree-Free Ordered Particles, Z. Fur Metallkunde, 1978, 69, p 628–634

    Google Scholar 

  10. M.P. Jackson and R.C. Reed, Heat Treatment of UDIMET 720Li: The Effect of Microstructure on Properties, Mater. Sci. Eng. A, 1999, 259, p 85–97

    Article  Google Scholar 

  11. B. Reppich, Some New Aspects Concerning Particle Hardening Mechanisms in γ’ Precipitating Ni-base Alloys-I. Theoretical Concept, Acta Metall., 1982, 30, p 87–94

    Article  Google Scholar 

  12. A.J. Ardell, Precipitation Hardening, Metall. Trans. A, 1985, 16, p 2131–2165

    Article  Google Scholar 

  13. J.H. Oh, B.G. Yoo, I.C. Choi, M.L. Santella, and J.I. Jang, Influence of Thermo-Mechanical Treatment on the Precipitation Strengthening Behavior of Inconel 740, a Ni-Based Superalloy, J. Mater. Res., 2011, 26, p 1253–1259

    Article  Google Scholar 

  14. H. Zhang, K. Zhang, Z. Lu, C. Zhao, and X. Yang, Hot Deformation Behavior and Processing Map of a γ′-Hardened Nickel-Based Superalloy, Mater. Sci. Eng. A, 2014, 604, p 1–8

    Article  Google Scholar 

  15. W.A. Backofen, I.R. Turner, and D.H. Avery, Superplasticity in an Al–Zn Alloy, Trans. ASM, 1964, 57, p 980–990

    Google Scholar 

  16. A. Van den Beukel, Theory of the Effect of Dynamic Strain Aging on Mechanical Properties, Phys. Status Solidi (a), 1975, 30, p 197–206

    Article  Google Scholar 

  17. K. Wang, M.Q. Li, J. Luo, and C. Li, Effect of the δ Phase on the Deformation Behavior in Isothermal Compression of Superalloy GH4169, Mater. Sci. Eng. A, 2011, 528, p 4723–4731

    Article  Google Scholar 

  18. J. Luo and M.Q. Li, Strain Rate Sensitivity and Strain Hardening Exponent During the Isothermal Compression of Ti60 Alloy, Mater. Sci. Eng. A, 2012, 538, p 156–163

    Article  Google Scholar 

  19. Y.M. Wang, A.M. Hodge, P.M. Bythrow, T.W. Barbee, Jr., and A.V. Hamza, Negative Strain Rate Sensitivity in Ultrahigh-Strength Nanocrystalline Tantalum, Appl. Phys. Lett., 2006, 89, p 081903

    Article  Google Scholar 

  20. B.Q. Han, J. Huang, Y.T. Zhu, and E.J. Lavernia, Negative strain-Rate Sensitivity in a Nanostructured Aluminum Alloy, Adv. Eng. Mater., 2006, 8, p 945–947

    Article  Google Scholar 

  21. J.H. Holloman, Tensile Deformations, Trans. Met. Soc. AIME, 1945, 162, p 268–290

    Google Scholar 

  22. C.M. Sellars and W.J.M.G. Tegart, Relationship Between Strength and Structure in Deformation at Elevated Temperatures, Mem. Sci. Rev. Met., 1966, 63, p 731

    Google Scholar 

  23. T. Sakai, Dynamic Recrystallization Microstructures Under Hot Working Conditions, J. Mater. Process. Tech., 1995, 53, p 349–361

    Article  Google Scholar 

  24. A. Chamanfar, M. Jahazi, J. Gholipour, P. Wanjara, and S. Yue, Evolution of Flow Stress and Microstructure During Isothermal Compression of Waspaloy, Mater. Sci. Eng. A, 2014, 615, p 497–510

    Article  Google Scholar 

  25. Y. Liu, R. Hu, J.S. Li, H.C. Kou, H.W. Li, H. Chang, and H.Z. Fu, Deformation Characteristics of As-Received Haynes 230 Nickel Base Superalloy, Mater. Sci. Eng. A, 2008, 497, p 283–289

    Article  Google Scholar 

  26. Z.N. Bi, M.C. Zhang, J.X. Dong, K.J. Luo, and J. Wang, A New Prediction Model of Steady State Stress Based on the Influence of the Chemical Composition for Nickel-Base Superalloys, Mater. Sci. Eng. A, 2010, 527, p 4373–4382

    Article  Google Scholar 

  27. V.V. Balasubrahmanyam and Y. Prasad, Deformation Behaviour of Beta Titanium Alloy Ti-10 V-4.5Fe-1.5 Al in Hot Upset Forging, Mater. Sci. Eng. A, 2002, 336, p 150–158

    Article  Google Scholar 

  28. Y. Wang, W.Z. Shao, L. Zhen, L. Yang, and X.M. Zhang, Flow Behavior and Microstructures of Superalloy 718 During High Temperature Deformation, Mater. Sci. Eng. A, 2008, 497, p 479–486

    Article  Google Scholar 

  29. J. Wang, J. Dong, M. Zhang, and X. Xie, Hot Working Characteristics of Nickel-Base Superalloy 740H During Compression, Mater. Sci. Eng. A, 2013, 566, p 61–70

    Article  Google Scholar 

  30. R.L. Goetz and S.L. Semiatin, The Adiabatic Correction Factor for Deformation Heating During the Uniaxial Compression Test, J. Mater. Eng. Perform., 2001, 10, p 710–717

    Article  Google Scholar 

  31. K. Song and M. Aindow, Grain Growth and Particle Pinning in a Model Ni-Based Superalloy, Mater. Sci. Eng. A, 2008, 479, p 365–372

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Specialized Research Fund for the National Key Research and Development Plan (Grant No. 2017YFA0403804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, X., Tan, Y., Wu, C. et al. The Precipitation Behavior and Hot Deformation Characteristics of Electron Beam Smelted Inconel 740 Superalloy. J. of Materi Eng and Perform 27, 1580–1591 (2018). https://doi.org/10.1007/s11665-018-3193-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3193-1

Keywords

Navigation