Effect of TiN Addition on 3Y-TZP Ceramics with Emphasis on Making EDM-Able Bodies

  • Mahnoosh Khosravifar
  • Seyyed Mohammad Mirkazemi
  • Mahdiar Taheri
  • Farhad Golestanifard


In this study, to produce electrically conductive ceramics, rapid hot press (RHP) sintering of 3 mol.% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) and 3Y-TZP/TiN composites with TiN amounts of 25, 35, and 45 vol.% was performed at 1300, 1350, and 1400 °C. Interestingly, the toughness and hardness were improved in the presence of TiN up to 35 vol.% and maximum fracture toughness and hardness of 5.40 ± 0.05 MPa m1/2 and 14.50 ± 0.06 GPa, respectively, were obtained. However, the bending strength was decreased which could be attributed to the rather weak interfaces of nitride and oxide phases. Regarding the zirconia matrix, the effect of grain size on fracture toughness of the samples has been studied using x-ray diffraction and field emission scanning electron microscope (FESEM) analysis. It was also found that electrical resistivity decreased to the value of 6.88 × 10−6 Ω m at 45 vol.% of TiN. It seems the TiN grains form a network to impose conductivity on the ZrO2 body; however, below 35 vol.% TiN, due to lack of percolation effect, this conductivity could not be maintained according to FESEM studies. Finally, electrically conductive samples were successfully machined by electrical discharge machining (EDM).


3 mol.% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) 3Y-TZP/TiN composites electrical conductivity electrical discharge machining (EDM) mechanical properties titanium nitride 


  1. 1.
    R.C. Garvie, R.H. Hannink, and R.T. Pascoe, Ceramic Steel?, Nature, 1975, 258(5537), p 703–704CrossRefGoogle Scholar
  2. 2.
    B. Basu, Toughening of Yttria-Stabilised Tetragonal Zirconia Ceramics, Int. Mater. Rev., 2013, 50(4), p 239–256CrossRefGoogle Scholar
  3. 3.
    A. Bravo-Leon, Y. Morikawa, M. Kawahara, and M.J. Mayo, Fracture Toughness of Nanocrystalline Tetragonal Zirconia with Low Yttria Content, Acta Mater., 2002, 50(18), p 4555–4562CrossRefGoogle Scholar
  4. 4.
    P.F. Becher and M.V. Swain, Grain-Size-Dependent Transformation Behavior in Polycrystalline Tetragonal Zirconia, J. Am. Ceram. Soc., 1992, 75(3), p 493–502CrossRefGoogle Scholar
  5. 5.
    B. Basu, J. Vleugels, and O. Van der Biest, Toughness Tailoring of Yttria-Doped Zirconia Ceramics, Mater. Sci. Eng., A, 2004, 380(1–2), p 215–221CrossRefGoogle Scholar
  6. 6.
    E. Mohamed, M. Taheri, M. Mehrjoo, M. Mazaheri, A.M. Zahedi, M.A. Shokrgozar, and F. Golestani-Fard, In Vitro Biocompatibility and Ageing of 3Y-TZP/CNTs Composites, Ceram. Int., 2015, 41(10), p 12773–12781CrossRefGoogle Scholar
  7. 7.
    M. Trunec and Z. Chlup, Higher Fracture Toughness of Tetragonal Zirconia Ceramics Through Nanocrystalline Structure, Scr. Mater., 2009, 61(1), p 56–59CrossRefGoogle Scholar
  8. 8.
    F.F. Lange, Transformation Toughening, Part 3. Experimental Observations in the ZrO2-Y2O3 System, J. Mater. Sci., 1982, 17(1), p 240–246CrossRefGoogle Scholar
  9. 9.
    J.R. Kelly and I. Denry, Stabilized Zirconia as a Structural Ceramic: An Overview, Dent. Mater., 2008, 24(3), p 289–298CrossRefGoogle Scholar
  10. 10.
    W. König, D.F. Dauw, G. Levy, and U. Panten, EDM-Future Steps Towards the Machining of Ceramics, CIRP Ann. Technol., 1988, 37(2), p 623–631CrossRefGoogle Scholar
  11. 11.
    B. Lauwers, K. Brans, W. Liu, J. Vleugels, S. Salehi, and K. Vanmeensel, Influence of the Type and Grain Size of the Electro-Conductive Phase on the Wire-EDM Performance of ZrO2 Ceramic Composites, CIRP Ann. Technol., 2008, 57(1), p 191–194CrossRefGoogle Scholar
  12. 12.
    K. Bonny, P. De Baets, J. Vleugels, A. Salehi, O. Van der Biest, B. Lauwers, and W. Liu, Influence of Secondary Electro-Conductive Phases on the Electrical Discharge Machinability and Frictional Behavior of ZrO2-Based Ceramic Composites, J. Mater. Process. Technol., 2008, 208(1–3), p 423–430CrossRefGoogle Scholar
  13. 13.
    K. Bonny, P. De Baets, P. Samyn, F. Lobbestael, J. Vleugels, B. Lauwers, and W. Liu, Reciprocative Sliding Friction and Wear Properties of Electrical Discharge Machined ZrO2-Based Composites, Lubr. Sci., 2009, 21(9), p 378–396CrossRefGoogle Scholar
  14. 14.
    W. Lengauer and R. Riedel, Ed., Handbook of Ceramic Hard Materials and Carbonitrides, Wiley-VCH Verlag GmbH, Weinheim, 2000, p 202–252Google Scholar
  15. 15.
    S. Ran and L. Gao, Mechanical Properties and Microstructure of TiN/TZP Nanocomposites, Mater. Sci. Eng. A, 2007, 447(1–2), p 83–86CrossRefGoogle Scholar
  16. 16.
    J. Sun, C. Huang, J. Wang, and H. Liu, Mechanical Properties and Microstructure of ZrO2-TiN-Al2O3 Composite Ceramics, Mater. Sci. Eng. A, 2006, 416(1–2), p 104–108CrossRefGoogle Scholar
  17. 17.
    C.F. Hu, B.N. Kim, Y.J. Park, M. Estili, S. Grasso, K. Morita, H. Yoshida, T. Nishimura, S.Q. Guo, and Y. Sakka, Nano ZrO2-TiN Composites with High Strength and Conductivity, J. Ceram. Soc. Jpn., 2015, 123(1434), p 86–89CrossRefGoogle Scholar
  18. 18.
    K. Vanmeensel, A. Laptev, O. Van der Biest, and J. Vleugels, The Influence of Percolation During Pulsed Electric Current Sintering of ZrO2-TiN Powder Compacts with Varying TiN Content, Acta Mater., 2007, 55(5), p 1801–1811CrossRefGoogle Scholar
  19. 19.
    K. Vanmeensel, A. Laptev, O. Van der Biest, and J. Vleugels, Field Assisted Sintering of Electro-Conductive ZrO2-Based Composites, J. Eur. Ceram. Soc., 2007, 27(2–3), p 979–985CrossRefGoogle Scholar
  20. 20.
    S. Put, J. Vleugels, O. Van der Biest, C.S. Trueman, and J. Huddleston, Die Sink Electrodischarge Machining of Zirconia Based Composites, Br. Ceram. Trans., 2001, 100(5), p 207–213CrossRefGoogle Scholar
  21. 21.
    S. Salehi, O. Van der Biest, and J. Vleugels, Electrically Conductive ZrO2-TiN Composites, J. Eur. Ceram. Soc., 2006, 26(15), p 3173–3179CrossRefGoogle Scholar
  22. 22.
    P. Schreyer, Direct Hot-Pressing Makes Sintering of Near-Net-Shape Parts Quick and Easy, Ceram. Forum Int., 2009, 86(4), p E39–E40Google Scholar
  23. 23.
    H. Toraya, M. Yoshimura, and S. Somiya, Calibration Curve for Quantitative Analysis of the Monoclinic-Tetragonal ZrO2 System by X-Ray Diffraction, J. Am. Ceram. Soc., 1984, 67(6), p C119–C121CrossRefGoogle Scholar
  24. 24.
    G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, and A. Critical, Evaluation of Indentation Techniques for Measuring Fracture Toughness. I, Direct Crack Measurements, J. Am. Ceram. Soc., 1981, 64(9), p 533–538CrossRefGoogle Scholar
  25. 25.
    M. Krawczyk, W. Lisowski, J.W. Sobczak, A. Kosiński, and A. Jablonski, Studies of the Hot-Pressed TiN Material by Electron Spectroscopies, J. Alloys Compd., 2013, 546, p 280–285CrossRefGoogle Scholar
  26. 26.
    F.F. Lange, Transformation Toughening, Part 1. Size Effects Associated with the Thermodynamics of Constrained Transformations, J. Mater. Sci., 1982, 17(1), p 225–234CrossRefGoogle Scholar
  27. 27.
    M. Taheri, M. Mazaheri, F. Golestani-Fard, H. Rezaie, and R. Schaller, High/Room Temperature Mechanical Properties of 3Y-TZP/CNTs Composites, Ceram. Int., 2014, 40(2), p 3347–3352CrossRefGoogle Scholar
  28. 28.
    L. Melk, J.J.R. Rovira, F. García-Marro, M.L. Antti, B. Milsom, M.J. Reece, and M. Anglada, Nanoindentation and Fracture Toughness of Nanostructured Zirconia/Multi-walled Carbon Nanotube Composites, Ceram. Int., 2015, 41(2), p 2453–2461CrossRefGoogle Scholar
  29. 29.
    N.P. Vafa, B. Nayebi, M.S. Asl, M.J. Zamharir, and M.G. Kakroudi, Reactive Hot Pressing of ZrB2-Based Composites with Changes in ZrO2/SiC Ratio and Sintering Conditions. Part II: Mechanical Behavior, Ceram. Int., 2016, 42(2), p 2724–2733CrossRefGoogle Scholar
  30. 30.
    A. Schubert, H. Zeidler, R. Kühn, and M. Hackert-Oschätzchen, Microelectrical Discharge Machining: A Suitable Process for Machining Ceramics, J. Ceram., 2015, 2015, p 9Google Scholar
  31. 31.
    S. De Bondt, L. Froyen, and A. Deruyttere, Electrical Conductivity of Composites: A Percolation Approach, J. Mater. Sci., 1992, 27(7), p 1983–1988CrossRefGoogle Scholar
  32. 32.
    Z.N. Wing, TiN Modified SiC with Enhanced Strength and Electrical Properties, J. Eur. Ceram. Soc., 2016, 37(4), p 1373–1378CrossRefGoogle Scholar
  33. 33.
    B. Lauwers, J.P. Kruth, W. Liu, W. Eeraerts, B. Schacht, and P. Bleys, Investigation of Material Removal Mechanisms in EDM of Composite Ceramic Materials, J. Mater. Process. Technol., 2004, 149(1–3), p 347–352CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Mahnoosh Khosravifar
    • 1
    • 2
  • Seyyed Mohammad Mirkazemi
    • 1
  • Mahdiar Taheri
    • 1
    • 3
  • Farhad Golestanifard
    • 1
  1. 1.School of Metallurgy and Materials EngineeringIran University of Science and TechnologyTehranIran
  2. 2.Department of Mechanical and Materials EngineeringUniversity of CincinnatiCincinnatiUSA
  3. 3.College of Engineering and Computer ScienceThe Australian National UniversityCanberraAustralia

Personalised recommendations