Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1505–1513 | Cite as

Effect of Quenching Process on Microstructures and Mechanical Properties of Fe-0.9Mn-0.5Cr-2.4Ni-0.5Mo-C Steel

  • Jie Chen
  • Changsheng Li
  • Xin Jin
  • Liqing Chen
  • Lei Fang
Article
  • 65 Downloads

Abstract

To develop an appropriate quenching process to produce Fe-0.9Mn-0.5Cr-2.4Ni-0.5Mo-C steel, the microstructures and mechanical properties of this steel were investigated under the direct quenching and tempering (DQT) and the direct quenching, reheated quenching and tempering (DQQT) heat treatment processes. The microstructure of the DQQT specimen was basically tempered sorbite with spherical precipitates, while quite a bit of tempered martensite was in the DQT specimen with dispersive nanoscaled precipitates. The yield strengths of the DQT and DQQT specimens were 1154 and 955 MPa, respectively. The yield strength of the DQT specimen was higher than that of the DQQT specimen because of its finer grain size, higher density of dislocations and dispersed precipitates. The DQQT specimen had spherical precipitates, which hindered the propagation of the crack. Moreover, the high-angle grain boundaries in the DQQT specimen took a higher proportion. Therefore, the Charpy impact values of DQT and DQQT specimens at − 60 °C were 38 and 75 J, respectively. Consequently, the mechanical properties of the Fe-0.9Mn-0.5Cr-2.4Ni-0.5Mo-C steel, which met the standard of 1000 MPa grade steel plate for hydropower station, were acquired by the DQQT process.

Keywords

− 60 °C Charpy impact microstructures quenching process steels for hydropower station yield strength 

Notes

Acknowledgments

The authors are very grateful to the financial support of the National Natural Science Foundation of China (51274062) and Research Fund for the Doctoral Program of Higher Education of China (20130042110040).

References

  1. 1.
    M. Li and W.L. Jiang, The Application and the Problems of High Strength Steel on Penstock in Chinese Hydroelectric Station, ISIJ Int., 2012, 42(12), p 1419–1422CrossRefGoogle Scholar
  2. 2.
    G.Z. Xiao, H.S. Di, F.X. Zhu, B.Z. Chen, and B. Qiu, Influence of Direct Quenching on Microstructure and Mechanical Properties of Steel Plate for Large Oil Storage Tanks, J. Mater. Eng. Perform., 2010, 19(6), p 868–872CrossRefGoogle Scholar
  3. 3.
    C. Ouchi, Development of Steel Plates by Intensive Use of TMCP and Direct Quenching Processes, ISIJ Int., 2001, 41(6), p 542–553CrossRefGoogle Scholar
  4. 4.
    S.K. Ghosh, A. Haldar, and P.P. Chattopadhyay, Effect of Pre-strain on the Ageing Behavior of Directly Quenched Copper Containing Micro-alloy Steel, Mater. Charact., 2008, 59(9), p 1227–1233CrossRefGoogle Scholar
  5. 5.
    W.S. Chang, Microstructure and Mechanical Properties of 780 MPa High Strength Steels Produced by Direct-Quenching and Tempering Process, J. Mater. Sci., 2002, 37(10), p 1973–1979CrossRefGoogle Scholar
  6. 6.
    J. Qiu, X. Ju, Y. Xin, S. Liu, Y.L. Wang, H.B. Wu, and D. Tang, Effect of Direct and Reheated Quenching on Microstructure and Mechanical Properties of CLAM Steel, J. Nucl. Mater., 2010, 407(3), p 189–194CrossRefGoogle Scholar
  7. 7.
    A.H. Meysami, R. Ghasemzadeh, S.H. Seyedein, and M.R. Aboutalebi, An Investigation on the Microstructure and Mechanical Properties of Direct-Quenched and Tempered AISI, 4140 Steel, Mater. Des., 2010, 31(3), p 1570–1575CrossRefGoogle Scholar
  8. 8.
    A.E. Amer, M.Y. Koo, K.H. Lee, S.H. Kim, and S.H. Hong, Effect of Welding Heat Input on Microstructure and Mechanical Properties of Simulated HAZ in Cu Containing Microalloyed Steel, J. Mater. Sci., 2010, 45(5), p 1248–1254CrossRefGoogle Scholar
  9. 9.
    L. Lan, C. Qiu, D. Zhao, X. Gao, and L. Du, Analysis of Martensite-austenite Constituent and Its Effect on Toughness in Submerged Arc Welded Joint of Low Carbon Bainitic Steel, J. Mater. Sci., 2012, 47(11), p 4732–4742CrossRefGoogle Scholar
  10. 10.
    A.F. Gourgues, H.M. Flower, and T.C. Lindley, Electron Backscattering Diffraction Study of Acicular Ferrite, Bainite, and Martensite Steel Microstructures, Mater. Sci. Tech., 2000, 16(1), p 26–40CrossRefGoogle Scholar
  11. 11.
    L. Feng, C. Wang, L. Lu, Z.D. Wang, G.D. Wang, and R.D.K. Misra, Microstructural Evolution and Properties of a High Strength Steel with Different Direct Quenching Processes, J. Iron. Steel Res. Int., 2015, 22(4), p 344–351CrossRefGoogle Scholar
  12. 12.
    J.W. Morris, Jr., On the Ductile-Brittle Transition in Lath Martensitic Steel, ISIJ Int., 2011, 51(10), p 1569–1575CrossRefGoogle Scholar
  13. 13.
    A. Ghosh, A. Ray, D. Chakrabarti, and C.L. Davis, Cleavage Initiation in Steel: Competition Between Large Grains and Large Particles, Mater. Sci. Eng. A, 2013, 561, p 126–135CrossRefGoogle Scholar
  14. 14.
    T. Karthikeyan, V. Thomas Paul, S. Saroja, A. Moitra, G. Sasikala, and M. Vijayalakshmi, Grain Refinement to Improve Toughness in 9Cr-1Mo Steel Through a Double Austenitization Treatment, J. Nucl. Mater., 2011, 419, p 256–262CrossRefGoogle Scholar
  15. 15.
    S. Morito, H. Saito, T. Ogawa, T. Furuhara, and T. Maki, Effect of Austenite Grain Size on the Morphology and Crystallography of Lath Martensite in Low Carbon Steels, ISIJ Int., 2005, 45(1), p 91–94CrossRefGoogle Scholar
  16. 16.
    A. Chatterjee, D. Chakrabarti, A. Moitra, R. Mitra, and A.K. Bhaduri, Effect of Normalization Temperatures on Ductile-Brittle Transition Temperature of a Modified 9Cr-1Mo Steel, Mater. Sci. Eng. A, 2014, 618, p 219–231CrossRefGoogle Scholar
  17. 17.
    J. Hu, L.X. Du, J.J. Wang, and Q.Y. Sun, Cooling Process and Mechanical Properties Design of Hot-Rolled Low Carbon High Strength Microalloyed Steel for Automotive Wheel Usage, Mater. Des., 2014, 53, p 332–337CrossRefGoogle Scholar
  18. 18.
    I.A. Yakubtsov and J.D. Boyd, Effect of Alloying on Microstructure and Mechanical Properties of Bainitic High Strength Plate Steels, Mater. Sci. Tech., 2008, 24(2), p 221–227CrossRefGoogle Scholar
  19. 19.
    H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Crystallographic Features of Lath Martensite in Low-Carbon Steel, Acta Mater., 2006, 54(5), p 1279–1288CrossRefGoogle Scholar
  20. 20.
    R.D.K. Misra, H. Nathani, J.E. Hartmann, and F. Siciliano, Microstructural Evolution in a New 770 Mpa Hot Rolled Nb-Ti Microalloyed Steel, Mater. Sci. Eng. A, 2005, 394, p 339–352CrossRefGoogle Scholar
  21. 21.
    I.A. Yakubtsov, P. Poruks, and J.D. Boyd, Microstructure and Mechanical Properties of Bainitic Low Carbon High Strength Plate Steels, Mater. Sci. Eng. A, 2008, 480, p 109–116CrossRefGoogle Scholar
  22. 22.
    H.J. Kestenbach, S.S. Campos, and E.V. Morales, Role of Interphase Precipitation in Microalloyed Hot Strip Steels, Mater. Sci. Tech., 2006, 22(6), p 615–626CrossRefGoogle Scholar
  23. 23.
    J. Hu, L.X. Du, J.J. Wang, H. Xie, C.R. Gao, and R.D.K. Misra, Structure-mechanical Property Relationship in Low Carbon Microalloyed Steel Plate Processed Using Controlled Rolling and Two-Stage Continuous Cooling, Mater. Sci. Eng. A, 2013, 585, p 197–204CrossRefGoogle Scholar
  24. 24.
    H. Xie, L.X. Du, J. Hu, and R.D.K. Misra, Microstructure and Mechanical Properties of a Novel 1000 MPa Grade TMCP Low Carbon Microalloyed Steel with Combination of High Strength and Excellent Toughness, Mater. Sci. Eng. A, 2014, 612, p 123–130CrossRefGoogle Scholar
  25. 25.
    J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth, Carbon Partitioning into Austenite after Martensite Transformation, Acta Mater., 2003, 51(9), p 2611–2622CrossRefGoogle Scholar
  26. 26.
    A. Lambert-Perlade, A.F. Gourgues, and A. Pineau, Austenite to Bainite Phase Transformation in the Heat-Affect Zone of a High Strength Low Alloy Steel, Acta Mater., 2004, 52(8), p 2337–2348CrossRefGoogle Scholar
  27. 27.
    A.F. Gourgues, Electron Backscatter Diffraction and Cracking, Mater. Sci. Tech., 2002, 18(2), p 119–133CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Jie Chen
    • 1
  • Changsheng Li
    • 1
  • Xin Jin
    • 1
  • Liqing Chen
    • 1
  • Lei Fang
    • 2
  1. 1.State Key Laboratory of Rolling Technology and AutomationNortheastern UniversityShenyangChina
  2. 2.Nanjing Iron and Steel Co., Ltd.NanjingChina

Personalised recommendations